Correlation Subspaces: Generalizations and Connection to Difference Coarrays

Direction-of-arrival (DOA) estimation finds applications in many areas of science and engineering. In these applications, sparse arrays such as minimum redundancy arrays, nested arrays, and coprime arrays can be exploited to resolve <inline-formula><tex-math notation="LaTeX">$O(N^2)$</tex-math></inline-formula> uncorrelated sources using <inline-formula><tex-math notation="LaTeX">$N$</tex-math></inline-formula> physical sensors. Recently, it has been shown that <italic>correlation subspaces</italic>, which reveal the structure of the covariance matrix, help to improve some existing DOA estimators. However, the bases, the dimension, and other theoretical properties of correlation subspaces remain to be investigated. This paper proposes <italic>generalized correlation subspaces</italic> in one and multiple dimensions. This leads to new insights into correlation subspaces and DOA estimation with prior knowledge. First, it is shown that the bases and the dimension of correlation subspaces are fundamentally related to <italic>difference coarrays</italic>, which were previously found to be important in the study of sparse arrays. Furthermore, generalized correlation subspaces can handle certain forms of prior knowledge about source directions. These results allow one to derive a broad class of DOA estimators with improved performance. It is demonstrated through examples that using sparse arrays and generalized correlation subspaces, DOA estimators with source priors exhibit better estimation performance than those without priors, in extreme cases like low SNR and limited snapshots.

[1]  Arogyaswami Paulraj,et al.  Joint angle and delay estimation using shift-invariance techniques , 1998, IEEE Trans. Signal Process..

[2]  P. Stoica,et al.  Maximum Likelhood Methods for Direction-of- Arrival Estimation , 1990 .

[3]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[4]  D. Thomson,et al.  Spectrum estimation and harmonic analysis , 1982, Proceedings of the IEEE.

[5]  Braham Himed,et al.  Sparsity-based DOA estimation using co-prime arrays , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[6]  Yimin Zhang,et al.  Generalized Coprime Array Configurations for Direction-of-Arrival Estimation , 2015, IEEE Transactions on Signal Processing.

[7]  Piya Pal,et al.  Cramér–Rao Bounds for Underdetermined Source Localization , 2016, IEEE Signal Processing Letters.

[8]  D. Slepian Prolate spheroidal wave functions, fourier analysis, and uncertainty — V: the discrete case , 1978, The Bell System Technical Journal.

[9]  P. P. Vaidyanathan,et al.  Cramér-Rao bounds for coprime and other sparse arrays, which find more sources than sensors , 2017, Digit. Signal Process..

[10]  M. Viberg,et al.  Two decades of array signal processing research: the parametric approach , 1996, IEEE Signal Process. Mag..

[11]  P. P. Vaidyanathan,et al.  Remarks on the Spatial Smoothing Step in Coarray MUSIC , 2015, IEEE Signal Processing Letters.

[12]  P. P. Vaidyanathan,et al.  Sparse Sensing With Co-Prime Samplers and Arrays , 2011, IEEE Transactions on Signal Processing.

[13]  Arye Nehorai,et al.  Coarrays, MUSIC, and the Cramér–Rao Bound , 2016, IEEE Transactions on Signal Processing.

[14]  Petre Stoica,et al.  SPICE and LIKES: Two hyperparameter-free methods for sparse-parameter estimation , 2012, Signal Process..

[15]  Lihua Xie,et al.  On Gridless Sparse Methods for Line Spectral Estimation From Complete and Incomplete Data , 2014, IEEE Transactions on Signal Processing.

[16]  F. Simons,et al.  Spatiospectral concentration in the Cartesian plane , 2010, 1007.5226.

[17]  Björn E. Ottersten,et al.  Covariance Matching Estimation Techniques for Array Signal Processing Applications , 1998, Digit. Signal Process..

[18]  George Atia,et al.  A subspace method for array covariance matrix estimation , 2016, 2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM).

[19]  Donald B. Percival,et al.  Spectral Analysis for Physical Applications , 1993 .

[20]  P. P. Vaidyanathan,et al.  Super Nested Arrays: Linear Sparse Arrays With Reduced Mutual Coupling—Part I: Fundamentals , 2016, IEEE Transactions on Signal Processing.

[21]  R. T. Hoctor,et al.  The unifying role of the coarray in aperture synthesis for coherent and incoherent imaging , 1990, Proc. IEEE.

[22]  Jian Li,et al.  SPICE: A Sparse Covariance-Based Estimation Method for Array Processing , 2011, IEEE Transactions on Signal Processing.

[23]  Ingrid Daubechies,et al.  Time-frequency localization operators: A geometric phase space approach , 1988, IEEE Trans. Inf. Theory.

[24]  Petre Stoica,et al.  Optimal prior knowledge-based direction of arrival estimation , 2012, IET Signal Process..

[25]  Y. Bar-Ness,et al.  A new approach to array geometry for improved spatial spectrum estimation , 1985, Proceedings of the IEEE.

[26]  P. P. Vaidyanathan,et al.  Pushing the Limits of Sparse Support Recovery Using Correlation Information , 2015, IEEE Transactions on Signal Processing.

[27]  Douglas A. Gray,et al.  Positive-definite Toeplitz completion in DOA estimation for nonuniform linear antenna arrays. II. Partially augmentable arrays , 1998, IEEE Trans. Signal Process..

[28]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[29]  Harry L. Van Trees,et al.  Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory , 2002 .

[30]  Weiyu Xu,et al.  Spectral Super-Resolution With Prior Knowledge , 2014, IEEE Transactions on Signal Processing.

[31]  Fred Haber,et al.  Statistical analysis of a high resolution spatial spectrum estimator utilizing an augmented covariance matrix , 1987, IEEE Trans. Acoust. Speech Signal Process..

[32]  Truong Q. Nguyen,et al.  Eigenfilters: A new approach to least-squares FIR filter design and applications including Nyquist filters , 1987 .

[33]  P. P. Vaidyanathan,et al.  A Grid-Less Approach to Underdetermined Direction of Arrival Estimation Via Low Rank Matrix Denoising , 2014, IEEE Signal Processing Letters.

[34]  Björn E. Ottersten,et al.  A subspace method for direction of arrival estimation of uncorrelated emitter signals , 1999, IEEE Trans. Signal Process..

[35]  P. P. Vaidyanathan,et al.  MIMO Radar Space–Time Adaptive Processing Using Prolate Spheroidal Wave Functions , 2008, IEEE Transactions on Signal Processing.

[36]  Fulvio Gini,et al.  Frequency Diverse Coprime Arrays With Coprime Frequency Offsets for Multitarget Localization , 2017, IEEE Journal of Selected Topics in Signal Processing.

[37]  Petre Stoica,et al.  Spectral Analysis of Signals , 2009 .

[38]  Benjamin Recht,et al.  Atomic norm denoising with applications to line spectral estimation , 2011, Allerton.

[39]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[40]  P. Vaidyanathan,et al.  Coprime sampling and the music algorithm , 2011, 2011 Digital Signal Processing and Signal Processing Education Meeting (DSP/SPE).

[41]  Lieven Vandenberghe,et al.  Extensions of semidefinite programming methods for atomic decomposition , 2016, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[42]  M. Skolnik,et al.  Introduction to Radar Systems , 2021, Advances in Adaptive Radar Detection and Range Estimation.

[43]  P. P. Vaidyanathan,et al.  Coprime arrays and samplers for space-time adaptive processing , 2015, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[44]  Moeness G. Amin,et al.  Sparsity-based extrapolation for direction-of-arrival estimation using co-prime arrays , 2016, SPIE Commercial + Scientific Sensing and Imaging.

[45]  Yonina C. Eldar,et al.  Direction of Arrival Estimation Using Co-Prime Arrays: A Super Resolution Viewpoint , 2013, IEEE Transactions on Signal Processing.

[46]  Jian Li,et al.  Weighted SPICE: A unifying approach for hyperparameter-free sparse estimation , 2014, Digit. Signal Process..

[47]  Nikos D. Sidiropoulos,et al.  Tensor Algebra and Multidimensional Harmonic Retrieval in Signal Processing for MIMO Radar , 2010, IEEE Transactions on Signal Processing.

[48]  P. P. Vaidyanathan,et al.  Nested Arrays: A Novel Approach to Array Processing With Enhanced Degrees of Freedom , 2010, IEEE Transactions on Signal Processing.

[49]  Alexei Gorokhov,et al.  Positive-definite Toeplitz completion in DOA estimation for nonuniform linear antenna arrays. II. Partially augmentable arrays , 1998, IEEE Transactions on Signal Processing.

[50]  Robert Bregovic,et al.  Multirate Systems and Filter Banks , 2002 .

[51]  A. Moffet Minimum-redundancy linear arrays , 1968 .

[52]  K. W. Cattermole The Fourier Transform and its Applications , 1965 .

[53]  Piya Pal,et al.  Compressive spectrum sensing with spectral priors for cognitive radar , 2016, 2016 4th International Workshop on Compressed Sensing Theory and its Applications to Radar, Sonar and Remote Sensing (CoSeRa).

[54]  Geert Leus,et al.  Compressive joint angular-frequency power spectrum estimation , 2013, 21st European Signal Processing Conference (EUSIPCO 2013).

[55]  Florian Roemer,et al.  Higher-Order SVD-Based Subspace Estimation to Improve the Parameter Estimation Accuracy in Multidimensional Harmonic Retrieval Problems , 2008, IEEE Transactions on Signal Processing.

[56]  Siliang Wu,et al.  Underdetermined DOA Estimation Under the Compressive Sensing Framework: A Review , 2016, IEEE Access.