Why automatic image analysis? An introduction to this issue

Abstract This short paper introduces this special issue on the use of automatic image analysis applied to cement and concrete materials. One paper gives a very short overview of the methods to be used, and the others illustrate by many examples why the techniques of image analysis have to be used for cement and concrete materials. It evidences the importance of knowledge of the morphology of objects. These different papers are presented according to a certain morphological classification.

[1]  P. Aitcin High Performance Concrete , 1998 .

[2]  M. Stroeven,et al.  Reconstructions by SPACE of the Interfacial Transition Zone , 2001 .

[3]  R. Ehrlich,et al.  On the ability of a class of random models to portray the structural features of real, observed, porous media in relation to fluid flow , 2001 .

[4]  D. Jeulin,et al.  Gypsum morphological analysis and modeling , 2001 .

[5]  J. Chermant,et al.  STUDY OF PHASE DISPERSION IN CONCRETE BY IMAGE ANALYSIS , 2001 .

[6]  Anne-Sophie Dequiedt,et al.  Distances between air-voids in concrete by automatic methods , 2001 .

[7]  M. Coster,et al.  Précis d'analyse d'images , 1989 .

[8]  M. Mouret,et al.  Image analysis: a tool for the characterisation of hydration of cement in concrete – metrological aspects of magnification on measurement , 2001 .

[9]  E. Weibel Practical methods for biological morphometry , 1979 .

[10]  F. Slate,et al.  Microcracking of Plain Concrete and the Shape of the Stress-Strain Curve , 1963 .

[11]  P. Stroeven,et al.  Some aspects of the micromechanics of concrete , 1973 .

[12]  A. Bascoul,et al.  About the analysis of microcracking in concrete , 2001 .

[13]  Denys Breysse,et al.  Image analysis for the automated study of microcracks in concrete , 2001 .

[14]  D. Jeulin,et al.  Simulation 3D de matériaux aléatoires polycristallins , 2000 .

[15]  J. Chermant,et al.  Image analysis and mathematical morphology for civil engineering materials , 2001 .

[16]  Surface state analysis by means of confocal microscopy , 2001 .

[17]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[18]  G Bernier,et al.  LES BETONS DE POUDRES REACTIVES (BPR) A ULTRA HAUTE RESISTANCE (200 A 800 MPA) , 1995 .

[19]  Hocine Boussa,et al.  A model for computation of leakage through damaged concrete structures , 2001 .

[20]  R. Jullien,et al.  Agglomeration of solid particles , 2001 .

[21]  Ph. Osmont,et al.  Utilisation de l’analyse d’images dans la sidérurgie , 1993 .

[22]  Sidney Diamond,et al.  The ITZ in concrete – a different view based on image analysis and SEM observations , 2001 .

[23]  M. Coster,et al.  Analyse d’images et céramiques , 2000 .

[24]  S. Diamond Considerations in image analysis as applied to investigations of the ITZ in concrete , 2001 .

[25]  D. Jeulin,et al.  Towards a model of concrete mesostructure , 2001 .

[26]  J. Chermant,et al.  Some fields of applications of automatic image analysis in civil engineering , 2001 .

[27]  RECOGNITION OF CLINKER PHASES BY AUTOMATIC IMAGE ANALYSIS , 2001 .

[28]  Michel Pigeon,et al.  Some findings on the usefulness of image analysis for determining the characteristics of the air-void system on hardened concrete , 2001 .

[29]  A. Stroeven,et al.  Image analysis of `natural' concrete samples by automated and manual procedures , 2001 .

[30]  I. T. Young,et al.  Quantitative Microscopy , 1984, Definitions.

[31]  Frédéric Zana,et al.  A multimodal registration algorithm of eye fundus images using vessels detection and Hough transform , 1999, IEEE Transactions on Medical Imaging.

[32]  D. Jeulin Analyse d’images et reconnaissance de formes en matériaux : introduction au thème , 2000 .