Phenylalanine-independent biosynthesis of 1,3,5,8-tetrahydroxyxanthone. A retrobiosynthetic NMR study with root cultures of Swertia chirata.

Root cultures of Swertia chirata (Gentianaceae) were grown with supplements of [1-13C]glucose, [U-13C6]glucose or [carboxy-13C]shikimic acid. 1,3,5,8-Tetrahydroxyxanthone was isolated and analysed by quantitative NMR analysis. The observed isotopomer distribution shows that 1,3,5,8-tetrahydroxyxanthone is biosynthesized via a polyketide-type pathway. The starter unit, 3-hydroxybenzoyl-CoA, is obtained from an early shikimate pathway intermediate. Phenylalanine, cinnamic acid and benzoic acid were ruled out as intermediates.

[1]  W. Eisenreich,et al.  Quantitative assessment of crosstalk between the two isoprenoid biosynthesis pathways in plants by NMR spectroscopy , 2004, Phytochemistry Reviews.

[2]  L. Beerhues,et al.  Benzoic acid biosynthesis in cell cultures of Hypericum androsaemum , 2002, Planta.

[3]  W. Eisenreich,et al.  Unexpected Biosynthetic Precursors of Amarogentin − A Retrobiosynthetic 13C NMR Study , 2001 .

[4]  W. Eisenreich,et al.  Deoxyxylulose phosphate pathway to terpenoids. , 2001, Trends in plant science.

[5]  A. M. A. A. El-Mawla,et al.  Cinnamic acid is a precursor of benzoic acids in cell cultures of Hypericum androsaemum L. but not in cell cultures of Centaurium erythraea RAFN , 2001, Planta.

[6]  W. Eisenreich,et al.  Elucidation of biosynthetic pathways by retrodictive/predictive comparison of isotopomer patterns determined by NMR spectroscopy. , 2000, Genetic engineering.

[7]  W. Eisenreich,et al.  Elucidation of novel biosynthetic pathways and metabolite flux patterns by retrobiosynthetic NMR analysis , 1998 .

[8]  L. Beerhues,et al.  Alternative pathways of xanthone biosynthesis in cell cultures of Hypericum androsaemum L , 1997, FEBS letters.

[9]  W. Eisenreich,et al.  Retrobiosynthetic NMR Studies with 13C-Labeled Glucose , 1997, The Journal of Biological Chemistry.

[10]  L. Beerhues Benzophenone synthase from cultured cells of Centaurium erythraea , 1996, FEBS letters.

[11]  Prof. Robert Hegnauer Chemotaxonomie der Pflanzen , 1996, Lehrbücher und Monographien aus dem Gebiete der Exakten Wissenschaften.

[12]  Hyeongjin Cho,et al.  Synthesis of D-(-)-[1,7-13C2]shikimic acid , 1992 .

[13]  W. Eisenreich,et al.  Biosynthesis of nucleotides, flavins, and deazaflavins in Methanobacterium thermoautotrophicum. , 1991, The Journal of biological chemistry.

[14]  G. J. Bennett,et al.  Biosynthesis of mangostin. Part 1. The origin of the xanthone skeleton , 1990 .

[15]  G. Cordell,et al.  Swertiabisxanthone-I from Swertia macrosperma , 1989 .

[16]  G. J. Bennett,et al.  The biosynthesis of mangostin: the origin of the xanthone skeleton , 1988 .

[17]  G. Fleet,et al.  Enantiospecific synthesis of shikimic acid from D-mannose: formation of a chiral cyclohexene by intramolecular olefination of a carbohydrate-derived intermediate , 1984 .

[18]  A. Bax,et al.  An NMR technique for tracing out the carbon skeleton of an organic molecule , 1981 .

[19]  M. Zenk Recent Work on Cinnamoyl CoA Derivatives , 1979 .

[20]  J. Lewis,et al.  Biogenesis of xanthones in Gentiana lutea , 1971 .

[21]  M. Zenk Pathways of salicyl alcohol and salicin formation in Salix purpurea L. , 1967 .

[22]  H. Floss,et al.  Biosyntheseversuche mit Gentianaceen I. , 1964 .

[23]  M. Zenk,et al.  [BIOSYNTHESIS OF P-HYDROXYBENZOIC ACID AND OTHER BENZOIC ACIDS IN HIGHER PLANTS]. , 1964, Zeitschrift fur Naturforschung. Teil B, Chemie, Biochemie, Biophysik, Biologie und verwandte Gebiete.