A disorder-enhanced quasi-one-dimensional superconductor

A powerful approach to analysing quantum systems with dimensionality d>1 involves adding a weak coupling to an array of one-dimensional (1D) chains. The resultant quasi-1D (q1D) systems can exhibit long-range order at low temperature, but are heavily influenced by interactions and disorder due to their large anisotropies. Real q1D materials are therefore ideal candidates not only to provoke, test and refine theories of strongly correlated matter, but also to search for unusual emergent electronic phases. Here we report the unprecedented enhancement of a superconducting instability by disorder in single crystals of Na2−δMo6Se6, a q1D superconductor comprising MoSe chains weakly coupled by Na atoms. We argue that disorder-enhanced Coulomb pair-breaking (which usually destroys superconductivity) may be averted due to a screened long-range Coulomb repulsion intrinsic to disordered q1D materials. Our results illustrate the capability of disorder to tune and induce new correlated electron physics in low-dimensional materials.

[1]  Inada Rumiko,et al.  Paramagnetic Property in the Commensurate Charge Density Wave Phase of 1T-TaS2 , 1981 .

[2]  Granular electronic systems , 2006, cond-mat/0603522.

[3]  Herzog,et al.  Crossover from two to one dimension in in situ grown wires of Pb. , 1993, Physical review letters.

[4]  V. L. Sedov,et al.  Localized magnetic states in metals , 1982 .

[5]  Superconductivity and charge-density waves in a quasi-one-dimensional spin-gap system , 2001, cond-mat/0111264.

[6]  P. Sheng,et al.  Superconductivity in 4-Angstrom carbon nanotubes--a short review. , 2012, Nanoscale.

[7]  S. Horii,et al.  Irradiation-induced confinement in a quasi-one-dimensional metal. , 2007, Physical review letters.

[8]  P. Sheng,et al.  1D to 3D dimensional crossover in the superconducting transition of the quasi-one-dimensional carbide superconductor Sc3CoC4 , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[9]  A. Mirlin,et al.  Enhancement of the critical temperature of superconductors by Anderson localization. , 2012, Physical review letters.

[10]  J. Tarascon,et al.  Study of the metal-semiconductor transition in Rb2Mo6Se6, Rb2Mo6Te6 and Cs2Mo6Te6 under pressures , 1985 .

[11]  Clogston Upper limit for the critical field in hard superconductors. [V/sub 2. 95/Ga, NbâSn,VâSi, V/sub 1. 95/ Ga] , 1962 .

[12]  Boies,et al.  One-particle and two-particle instability of coupled Luttinger liquids. , 1994, Physical review letters.

[13]  L. Boeri,et al.  Phonon mode spectroscopy, electron-phonon coupling, and the metal-insulator transition in quasi-one-dimensional M 2 Mo 6 Se 6 , 2010, 1007.5365.

[14]  O. Fischer,et al.  Multiband superconductivity in the Chevrel phases SnMo6S8 and PbMo6S8. , 2010, Physical review letters.

[15]  T. Giamarchi,et al.  Variable-range hopping and quantum creep in one dimension. , 2003, Physical review letters.

[16]  T. Jarlborg,et al.  Luttinger-liquid theory of purple bronze Li 0.9 Mo 6 O 17 in the charge regime , 2012, 1205.0239.

[17]  Fukuyama Hidetoshi,et al.  Negative Magnetoresistance in the Anderson Localized States , 1979 .

[18]  Boris I Shklovskii,et al.  Coulomb gap and low temperature conductivity of disordered systems , 1975 .

[19]  O. Fischer,et al.  New pseudo-one-dimensional metals: M2Mo6Se6 (M = Na, In, K, TI), M2Mo6S6 (M = K, Rb, Cs), M2Mo6Te6 (M = In, TI) , 1980 .

[20]  L. Ioffe,et al.  Eigenfunction fractality and pseudogap state near the superconductor-insulator transition. , 2006, Physical review letters.

[21]  M. Onoda,et al.  On the anomalous transport properties of Li0.9Mo6O17 , 1986 .

[22]  O. Fischer,et al.  A new pseudo-one-dimensional superconductor: Tℓ2Mo6Se6 , 1980 .

[23]  Yi-Kuo Yu,et al.  Dimensional crossover in the purple bronze Li0.9Mo6O17. , 2007, Physical review letters.

[24]  Antonio M. Garc'ia-Garc'ia,et al.  Global critical temperature in disordered superconductors with weak multifractality , 2014, 1412.0029.

[25]  T. Mishonov,et al.  Kinetics and Boltzmann kinetic equation for fluctuation Cooper pairs above T_c , 2003, cond-mat/0302046.

[26]  M. Randeria,et al.  Inhomogeneous pairing in highly disordered s-wave superconductors , 2000, cond-mat/0012304.

[27]  P. Gougeon,et al.  Superconductivity of the linear chain compound Tl2Mo6Se6 , 1984 .

[28]  Nevill Mott,et al.  Conduction in non-crystalline materials , 1989 .

[29]  F. Altomare,et al.  One-Dimensional Superconductivity in Nanowires , 2013 .

[30]  H. Fukuyama,et al.  Localisation and superconductivity in Li0.9Mo6O17 , 1987 .

[31]  T. M. Rice,et al.  Metal‐Insulator Transitions , 2003 .

[32]  Lev P. Gor'kov,et al.  Minute Metallic Particles in an Electromagnetic Field , 1965 .

[33]  B. Halperin,et al.  Time scale of intrinsic resistive fluctuations in thin superconducting wires , 1970 .

[34]  J. Tarascon,et al.  A facile synthesis of pseudo one-monodimensional ternary molybdenum chalcogenides M2Mo6X6 (X = Se,Te; M = Li,Na..Cs) , 1984 .

[35]  A. Mirlin,et al.  Superconductor-insulator transitions: Phase diagram and magnetoresistance , 2015, 1503.06540.

[36]  A. Mirlin,et al.  Anderson Transitions , 2007, 0707.4378.

[37]  A. V. Tulub,et al.  Intrinsic resistive transition in narrow superconducting channels , 1973 .

[38]  A. Schmid,et al.  Superconductivity and electron-phonon interaction in impure simple metals , 1976 .

[39]  W. Buckel Elektronenbeugungs-Aufnahmen von dünnen Metallschichten bei tiefen Temperaturen , 1954 .

[40]  F. Peeters,et al.  Phonon limited superconducting correlations in metallic nanograins , 2015, Scientific Reports.

[41]  J. Tarascon,et al.  Physical properties of several M2Mo6X6 compounds (M=group IA metal; X=Se, Te) , 1984 .

[42]  H. Aoki Critical behaviour of extended states in disordered systems , 1983 .

[43]  Z. Wang,et al.  Superconducting transitions of intrinsic arrays of weakly coupled one-dimensional superconducting chains: the case of the extreme quasi-1D superconductor Tl2Mo6Se6 , 2011, 1106.2405.

[44]  H. Fukuyama,et al.  Dynamics of the charge-density wave. I. Impurity pinning in a single chain , 1978 .

[45]  Haviland,et al.  Onset of superconductivity in the two-dimensional limit. , 1989, Physical review letters.

[46]  V. Kravtsov Wonderful life at weak Coulomb interaction: increasing of superconducting/superfluid transition temperature by disorder , 2011, 1109.2515.

[47]  N. Ong,et al.  Anomalous transport properties of a linear-chain metal: NbSe/sub 3/ , 1977 .

[48]  Thierry Giamarchi,et al.  Quantum physics in one dimension , 2004 .

[49]  A. Kadin,et al.  Renormalization and the Kosterlitz-Thouless transition in a two-dimensional superconductor , 1983 .

[50]  M. Randeria,et al.  Role of Spatial Amplitude Fluctuations in Highly Disordered s-Wave Superconductors , 1998, cond-mat/9806060.

[51]  J. M. Luttinger An Exactly Soluble Model of a Many‐Fermion System , 1963 .

[52]  On Mott’s formula for the ac-conductivity in the Anderson model , 2005, math-ph/0508007.

[53]  Kotliar,et al.  Anderson localization and the theory of dirty superconductors. , 1985, Physical review letters.

[54]  M. V. Feigel’man,et al.  Fractal superconductivity near localization threshold , 2010, 1002.0859.

[55]  H. Zeller,et al.  Evidence for One-Dimensional Metallic Behavior in K 2 Pt(CN) 4 Br 0.3 . (H 2 O) n , 1971 .

[56]  D. Haar 3 – The Theory of a Fermi Liquid† , 1965 .

[57]  Variable-range hopping in quasi-one-dimensional electron crystals , 2003, cond-mat/0307299.

[58]  Fisher,et al.  Quantum phase transitions in disordered two-dimensional superconductors. , 1990, Physical review letters.

[59]  Schreiber,et al.  Multifractal wave functions at the Anderson transition. , 1991, Physical review letters.

[60]  P. Gougeon,et al.  The exotic superconductor Tl2Mo6Se6 investigated by low field magnetization measurements , 1988 .

[61]  A. D. Zaikin,et al.  Superconductivity in one dimension , 2008, 0805.2118.

[62]  D. Knyazev,et al.  Metal-insulator transition in two dimensions: experimental test of the two-parameter scaling. , 2008, Physical review letters.

[63]  Haviland,et al.  Insulator-to-superconductor transition in ultrathin films. , 1993, Physical review. B, Condensed matter.

[64]  K. Kern,et al.  Observation of shell effects in superconducting nanoparticles of Sn. , 2010, Nature materials.

[65]  M. J. Rice,et al.  Gor'kov-Eliashberg Effect in One-Dimensional Metals? , 1972 .

[66]  S. Horii,et al.  Possible coexistence of local itinerancy and global localization in a quasi-one-dimensional conductor. , 2007, Physical review letters.

[67]  C. Castellani,et al.  Broadening of the Berezinskii-Kosterlitz-Thouless superconducting transition by inhomogeneity and finite-size effects , 2009, 0909.0479.

[68]  Roberto Dinapoli,et al.  PILATUS: A single photon counting pixel detector for X-ray applications , 2009 .

[69]  Alexander L. Efros,et al.  Electronic Properties of Doped Semi-conductors , 1984 .

[70]  Evidence for High TC Superconducting Transitions in Isolated Al45− and Al47− Nanoclusters , 2008, 0804.0824.

[71]  A. Bogdanov,et al.  CROSSOVER FROM WEAK TO STRONG LOCALIZATION IN QUASI-ONE-DIMENSIONAL CONDUCTORS , 1997 .

[72]  G. W. Cullen,et al.  Enhancement of superconductivity in metal films , 1966 .

[73]  Xiaofeng Xu,et al.  Directional field-induced metallization of quasi-one-dimensional Li0.9Mo6O17. , 2009, Physical review letters.

[74]  G. Deutscher,et al.  Kondo-like behavior near the metal-to-insulator transition of nanoscale granular aluminum , 2012, 1207.0970.

[75]  P. Sheng,et al.  Dimensional crossover transition in a system of weakly coupled superconducting nanowires , 2012 .

[76]  K. Slevin,et al.  Critical exponent for the Anderson transition in the three-dimensional orthogonal universality class , 2013, 1307.4483.

[77]  A. Vecchione,et al.  Quantum phase slips in superconducting Nb nanowire networks deposited on self-assembled Si templates , 2012, 1210.3521.

[78]  L. Boeri,et al.  Reentrant Phase Coherence in Superconducting Nanowire Composites. , 2016, ACS nano.

[79]  Fluctuation Phenomena in Superconductors , 2001, cond-mat/0109177.

[80]  O. Fischer,et al.  Unconventional resistive transitions in the extreme type-II superconductor Tl2Mo6Se6 , 2007 .

[81]  Seongsu Lee,et al.  Enhanced upper critical fields in a new quasi-one-dimensional superconductor Nb2PdxSe5 , 2013, 1310.5975.

[82]  Philip W. Anderson,et al.  Theory of dirty superconductors , 1959 .

[83]  Q. Hang,et al.  A nanocapacitor with giant dielectric permittivity , 2006 .

[84]  M. Sergent,et al.  Labilité des cations dans les chalcogénures ternaires de molybdène: voies d'accès à de nouvelles synthèses , 1984 .

[85]  A. M. Finkel’shteǐn Superconducting transition temperature in amorphous films , 1987 .

[86]  Remarks on Bloch's Method of Sound Waves applied to Many-Fermion Problems , 1950 .

[87]  L. Gor’kov,et al.  Superconducting alloys at finite temperatures , 1959 .

[88]  J. Mercure,et al.  Upper critical magnetic field far above the paramagnetic pair-breaking limit of superconducting one-dimensional Li0:9Mo6O17 single crystals. , 2012, Physical review letters.

[89]  J. Mercure,et al.  Gross violation of the Wiedemann–Franz law in a quasi-one-dimensional conductor , 2011, Nature communications.

[90]  Ø. Fischer,et al.  Chevrel phases: Superconducting and normal state properties , 1978 .

[91]  Yi-Kuo Yu,et al.  Electrical transport in single-crystalline Li 0.9 Mo 6 O 17 : A two-band Luttinger liquid exhibiting Bose metal behavior , 2008 .

[92]  Y. Loh,et al.  Single- and two-particle energy gaps across the disorder-driven superconductor-insulator transition , 2010, 1011.3275.

[93]  Dmitri S. Golubev,et al.  Quantum Tunneling of the Order Parameter in Superconducting Nanowires , 2001 .

[94]  I. Martin,et al.  LOCAL PAIRING AT U IMPURITIES IN BCS SUPERCONDUCTORS CAN ENHANCE TC , 1997, cond-mat/9704207.

[95]  Briggs,et al.  Superconducting and dielectric instabilities in Tl2Mo6Se6: Unusual transport properties and unsaturating critical field. , 1994, Physical review. B, Condensed matter.

[96]  Y. Avishai,et al.  Nature of the superconductor–insulator transition in disordered superconductors , 2007, Nature.

[97]  C. N. Lau,et al.  Quantum phase slips in superconducting nanowires. , 2001, Physical review letters.

[98]  Aoki Fractal dimensionality of wave functions at the mobility edge: Quantum fractal in the Landau levels. , 1986, Physical review. B, Condensed matter.

[99]  L. Landau The theory of a Fermi liquid , 2003 .