A genetic algorithm study on the most stable disordered and ordered configurations of Au38–55

Abstract We used the genetic algorithm, with a Gupta n -body potential, to study structures of the ground states and near ground ordered states of medium-sized Au n ( n from 38 to 55) clusters. It is found that the most stable configurations are mainly disordered with the ordered isomers very close in energy to the ground state. The lowest-lying ordered structure changes from close packed mode to icosahedron-like structure with increasing cluster size. A common neighbor analysis (CNA) was applied to demonstrate the structural evolvement.

[1]  Pinto,et al.  Simulated gold clusters and relative extended x-ray-absorption fine-structure spectra. , 1993, Physical review. B, Condensed matter.

[2]  Karo Michaelian,et al.  Structure and energetics of Ni, Ag, and Au nanoclusters , 1999 .

[3]  J. Lévy,et al.  Structural transitions in clusters , 1997 .

[4]  Posada-Amarillas,et al.  Microstructural analysis of simulated liquid and amorphous Ni. , 1996, Physical review. B, Condensed matter.

[5]  R. P. Andres,et al.  Coulomb Staircase at Room Temperature in a Self-Assembled Molecular Nanostructure , 1996, Science.

[6]  P. Schultz,et al.  Organization of 'nanocrystal molecules' using DNA , 1996, Nature.

[7]  Posada-Amarillas,et al.  Structural and vibrational analysis of amorphous Au55 clusters. , 1996, Physical review. B, Condensed matter.

[8]  Pinto,et al.  Evidence for truncated octahedral structures in supported gold clusters. , 1995, Physical review. B, Condensed matter.

[9]  John Maddox,et al.  Genetics helping molecular dynamics , 1995, Nature.

[10]  M. Ávalos,et al.  High resolution tem studies of gold and palladium nano-particles , 1992 .

[11]  Peter W. Stephens,et al.  Structural evolution of smaller gold nanocrystals: The truncated decahedral motif , 1997 .

[12]  B. Legrand,et al.  Thermodynamical and structural properties of f.c.c. transition metals using a simple tight-binding model , 1989 .

[13]  F. Ducastelle Modules élastiques des métaux de transition , 1970 .

[14]  J. Rose,et al.  KCl) 32 and the possibilities for glassy clusters , 1993 .

[15]  R. Boese,et al.  Au55[P(C6H5)3]12CI6 — ein Goldcluster ungewöhnlicher Größe , 1981 .

[16]  J. Jellinek,et al.  Theoretical Dynamical Studies of Metal Clusters and Cluster-Ligand Systems , 1996 .

[17]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[18]  Santucci,et al.  Extended x-ray-absorption fine-structure and near-edge-structure studies on evaporated small clusters of Au. , 1985, Physical review. B, Condensed matter.

[19]  D. Sánchez-Portal,et al.  Lowest Energy Structures of Gold Nanoclusters , 1998 .

[20]  Marcus,et al.  Structure and vibrations of chemically produced Au55 clusters. , 1990, Physical review. B, Condensed matter.

[21]  Rosato,et al.  Tight-binding potentials for transition metals and alloys. , 1993, Physical review. B, Condensed matter.

[22]  Ho,et al.  Molecular geometry optimization with a genetic algorithm. , 1995, Physical review letters.

[23]  Robert L. Whetten,et al.  Isolation of Smaller Nanocrystal Au Molecules: Robust Quantum Effects in Optical Spectra , 1997 .