Heparanase protects the heart against chemical or ischemia/reperfusion injury.

[1]  J. Kelly,et al.  Pharmacologic ATF6 activating compounds are metabolically activated to selectively modify endoplasmic reticulum proteins , 2018, eLife.

[2]  T. Gillette,et al.  The unfolded protein response in ischemic heart disease. , 2018, Journal of molecular and cellular cardiology.

[3]  F. Tang,et al.  ATF6 safeguards organelle homeostasis and cellular aging in human mesenchymal stem cells , 2018, Cell Discovery.

[4]  B. Rodrigues,et al.  Autophagy, Metabolic Disease, and Pathogenesis of Heart Dysfunction. , 2017, The Canadian journal of cardiology.

[5]  C. Zhang,et al.  Role of Endoplasmic Reticulum Stress, Autophagy, and Inflammation in Cardiovascular Disease , 2017, Front. Cardiovasc. Med..

[6]  T. Rabelink,et al.  Heparanase: roles in cell survival, extracellular matrix remodelling and the development of kidney disease , 2017, Nature Reviews Nephrology.

[7]  R. Gottlieb,et al.  Myocardial stress and autophagy: mechanisms and potential therapies , 2017, Nature Reviews Cardiology.

[8]  R. Kaufman,et al.  ATF6 Decreases Myocardial Ischemia/Reperfusion Damage and Links ER Stress and Oxidative Stress Signaling Pathways in the Heart , 2017, Circulation research.

[9]  W. Paschen,et al.  Activation of the ATF6 branch of the unfolded protein response in neurons improves stroke outcome , 2017, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[10]  D. Sabatini,et al.  Loss of hepatic DEPTOR alters the metabolic transition to fasting , 2017, Molecular metabolism.

[11]  B. Rodrigues,et al.  High glucose facilitated endothelial heparanase transfer to the cardiomyocyte modifies its cell death signature. , 2016, Cardiovascular research.

[12]  Preeti Singh,et al.  Heparanase: From basic research to therapeutic applications in cancer and inflammation. , 2016, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.

[13]  James D. Johnson,et al.  Heparanase Overexpression Induces Glucagon Resistance and Protects Animals From Chemically Induced Diabetes , 2016, Diabetes.

[14]  J. Judd,et al.  Isolation, Culture and Transduction of Adult Mouse Cardiomyocytes. , 2016, Journal of visualized experiments : JoVE.

[15]  J. Oliveros,et al.  Activating transcription factor 6 derepression mediates neuroprotection in Huntington disease. , 2016, The Journal of clinical investigation.

[16]  R. Takahashi,et al.  Deletion of Atf6α enhances kainate-induced neuronal death in mice , 2016, Neurochemistry International.

[17]  Harun-Or Rashid,et al.  ER stress: Autophagy induction, inhibition and selection , 2015, Autophagy.

[18]  A. Shteingauz,et al.  Heparanase Enhances Tumor Growth and Chemoresistance by Promoting Autophagy. , 2015, Cancer research.

[19]  Deye Song,et al.  Interplay between unfolded protein response and autophagy promotes tumor drug resistance , 2015, Oncology letters.

[20]  J. Debnath,et al.  Autophagy at the crossroads of catabolism and anabolism , 2015, Nature Reviews Molecular Cell Biology.

[21]  E. Liehn,et al.  Minimal Invasive Surgical Procedure of Inducing Myocardial Infarction in Mice , 2015, Journal of visualized experiments : JoVE.

[22]  Z. Qin,et al.  The divergent roles of autophagy in ischemia and preconditioning , 2015, Acta Pharmacologica Sinica.

[23]  Z. Ronai,et al.  UPR, autophagy, and mitochondria crosstalk underlies the ER stress response. , 2015, Trends in biochemical sciences.

[24]  K. Mori,et al.  Deletion of Atf6α impairs astroglial activation and enhances neuronal death following brain ischemia in mice , 2015, Journal of neurochemistry.

[25]  F. Cao,et al.  The role of the autophagy in myocardial ischemia/reperfusion injury. , 2015, Biochimica et biophysica acta.

[26]  L. Nilsson,et al.  Overexpression of Heparanase Lowers the Amyloid Burden in Amyloid-β Precursor Protein Transgenic Mice* , 2014, The Journal of Biological Chemistry.

[27]  T. Takano,et al.  Calcium-independent Phospholipase A2γ Enhances Activation of the ATF6 Transcription Factor during Endoplasmic Reticulum Stress* , 2014, The Journal of Biological Chemistry.

[28]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[29]  C. Glembotski Roles for ATF6 and the sarco/endoplasmic reticulum protein quality control system in the heart. , 2014, Journal of molecular and cellular cardiology.

[30]  L. Xiong,et al.  The protective roles of autophagy in ischemic preconditioning , 2013, Acta Pharmacologica Sinica.

[31]  Wei Li,et al.  RSeQC: quality control of RNA-seq experiments , 2012, Bioinform..

[32]  M. Fukumoto,et al.  Atf6α-null mice are glucose intolerant due to pancreatic β-cell failure on a high-fat diet but partially resistant to diet-induced insulin resistance. , 2012, Metabolism: clinical and experimental.

[33]  B. Aronow,et al.  A Thrombospondin-Dependent Pathway for a Protective ER Stress Response , 2012, Cell.

[34]  Peter J. Belmont,et al.  Regulation of microRNA expression in the heart by the ATF6 branch of the ER stress response. , 2012, Journal of molecular and cellular cardiology.

[35]  Christian Appenzeller‐Herzog,et al.  Bidirectional crosstalk between endoplasmic reticulum stress and mTOR signaling. , 2012, Trends in cell biology.

[36]  J. Jansson,et al.  Heparanase Affects Food Intake and Regulates Energy Balance in Mice , 2012, PloS one.

[37]  Z. Qin,et al.  Autophagy regulates endoplasmic reticulum stress in ischemic preconditioning , 2012, Autophagy.

[38]  C. Hetz The unfolded protein response: controlling cell fate decisions under ER stress and beyond , 2012, Nature Reviews Molecular Cell Biology.

[39]  K. Sadler,et al.  Activating transcription factor 6 plays protective and pathological roles in steatosis due to endoplasmic reticulum stress in zebrafish , 2011, Hepatology.

[40]  A. Purushothaman,et al.  Heparanase-mediated Loss of Nuclear Syndecan-1 Enhances Histone Acetyltransferase (HAT) Activity to Promote Expression of Genes That Drive an Aggressive Tumor Phenotype* , 2011, The Journal of Biological Chemistry.

[41]  J. Esko,et al.  Heparan sulfate proteoglycans. , 2011, Cold Spring Harbor perspectives in biology.

[42]  N. Friedman,et al.  Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2011, Nature Biotechnology.

[43]  G. Petrovski,et al.  Cardioprotection by endoplasmic reticulum stress-induced autophagy. , 2011, Antioxidants & redox signaling.

[44]  Jody Groenendyk,et al.  Biology of endoplasmic reticulum stress in the heart. , 2010, Circulation research.

[45]  Joseph A. Hill,et al.  Pathogenesis of myocardial ischemia-reperfusion injury and rationale for therapy. , 2010, The American journal of cardiology.

[46]  I. Vlodavsky,et al.  Tumorigenic and adhesive properties of heparanase. , 2010, Seminars in cancer biology.

[47]  R. Gottlieb,et al.  Autophagy in Ischemic Heart Disease , 2009, Circulation research.

[48]  Guido Kroemer,et al.  Autophagy in the Pathogenesis of Disease , 2008, Cell.

[49]  T. Asano,et al.  Distinct Roles of Autophagy in the Heart During Ischemia and Reperfusion: Roles of AMP-Activated Protein Kinase and Beclin 1 in Mediating Autophagy , 2007, Circulation research.

[50]  Afshin Samali,et al.  Mediators of endoplasmic reticulum stress‐induced apoptosis , 2006, EMBO reports.

[51]  I. Vlodavsky,et al.  In vivo fragmentation of heparan sulfate by heparanase overexpression renders mice resistant to amyloid protein A amyloidosis. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[52]  R. Sarid,et al.  Heparanase accelerates wound angiogenesis and wound healing in mouse and rat models , 2005, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[53]  T. Weinstein,et al.  Transgenic expression of mammalian heparanase uncovers physiological functions of heparan sulfate in tissue morphogenesis, vascularization, and feeding behavior , 2004, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[54]  I. Vlodavsky,et al.  Heparanase affects adhesive and tumorigenic potential of human glioma cells. , 2003, Cancer research.

[55]  B. Rodrigues,et al.  Cardiac lipoprotein lipase in the spontaneously hypertensive rat. , 1997, Cardiovascular research.

[56]  F. Marumo,et al.  Heparin and heparan sulfate block angiotensin II-induced hypertrophy in cultured neonatal rat cardiomyocytes. A possible role of intrinsic heparin-like molecules in regulation of cardiomyocyte hypertrophy. , 1996, Circulation.

[57]  R. Sanderson,et al.  Opposing Functions of Heparanase-1 and Heparanase-2 in Cancer Progression. , 2018, Trends in biochemical sciences.

[58]  C. Glembotski,et al.  ER Protein Quality Control and the Unfolded Protein Response in the Heart. , 2018, Current topics in microbiology and immunology.