Bézier representation of the constrained dual Bernstein polynomials

Abstract Explicit formulae for the Bezier coefficients of the constrained dual Bernstein basis polynomials are derived in terms of the Hahn orthogonal polynomials. Using difference properties of the latter polynomials, efficient recursive scheme is obtained to compute these coefficients. Applications of this result to some problems of CAGD is discussed.

[1]  Z. Ciesielski Explicit formula relating the Jacobi, Hahn and Bernstein polynomials , 1987 .

[2]  Tomoyuki Nishita,et al.  Curve intersection using Bézier clipping , 1990, Comput. Aided Des..

[3]  C. W. Clenshaw,et al.  The special functions and their approximations , 1972 .

[4]  Iván Area,et al.  Bernstein bases and hahn—eberlein orthogonal polynomials , 1998 .

[5]  Pawel Wozny,et al.  Dual generalized Bernstein basis , 2006, J. Approx. Theory.

[6]  Abedallah Rababah,et al.  The weighted dual functionals for the univariate Bernstein basis , 2007, Appl. Math. Comput..

[7]  Pawel Wozny,et al.  Polynomial approximation of rational Bézier curves with constraints , 2012, Numerical Algorithms.

[8]  Pawel Wozny,et al.  Multi-degree reduction of Bézier curves with constraints, using dual Bernstein basis polynomials , 2009, Comput. Aided Geom. Des..

[9]  Bert Jüttler,et al.  Computing roots of polynomials by quadratic clipping , 2007, Comput. Aided Geom. Des..

[10]  Abedallah Rababah,et al.  Weighted dual functions for Bernstein basis satisfying boundary constraints , 2008, Appl. Math. Comput..

[11]  Bert Jüttler,et al.  The dual basis functions for the Bernstein polynomials , 1998, Adv. Comput. Math..

[12]  Ligang Liu,et al.  Fast approach for computing roots of polynomials using cubic clipping , 2009, Comput. Aided Geom. Des..

[13]  Leon M. Hall,et al.  Special Functions , 1998 .

[14]  Rene F. Swarttouw,et al.  Hypergeometric Orthogonal Polynomials , 2010 .

[15]  Z. Tsesel'skii,et al.  The B-spline basis in a space of algebraic polynomials , 1986 .

[16]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .