Singularities in the complex physical plane for deep water waves

Abstract Deep water waves in two-dimensional flow can have curvature singularities on the surface profile; for example, the limiting Stokes wave has a corner of $2\lrm{\pi} / 3$ radians and the limiting standing wave momentarily forms a corner of $\lrm{\pi} / 2$ radians. Much less is known about the possible formation of curvature singularities in general. A novel way of exploring this possibility is to consider the curvature as a complex function of the complex arclength variable and to seek the existence and nature of any singularities in the complex arclength plane. Highly accurate boundary integral methods produce a Fourier spectrum of the curvature that allows the identification of the nearest singularity to the real axis of the complex arclength plane. This singularity is in general a pole singularity that moves about the complex arclength plane. It approaches the real axis very closely when waves break and is associated with the high curvature at the tip of the breaking wave. The behaviour of these singularities is more complex for standing waves, where two singularities can be identified that may collide and separate. One of them approaches the real axis very closely when a standing wave forms a very narrow collapsing column of water almost under free fall. In studies so far, no singularity reaches the real axis in finite time. On the other hand, the surface elevation $y(x)$ has square-root singularities in the complex $x$ plane that do reach the real axis in finite time, the moment when a wave first starts to break. These singularities have a profound effect on the wave spectra.

[1]  G. Baker,et al.  GENERALIZED VORTEX METHODS FOR FREE-SURFACE FLOWS , 1983 .

[2]  M. Fontelos,et al.  Singularities in water waves and the Rayleigh–Taylor problem , 2010, Journal of Fluid Mechanics.

[3]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[4]  G. Baker,et al.  Application of Adaptive Quadrature to Axi-symmetric Vortex Sheet Motion , 1998 .

[5]  M. Longuet-Higgins On the forming of sharp corners at a free surface , 1980, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[6]  Michael Siegel,et al.  Singularity formation during Rayleigh–Taylor instability , 1993, Journal of Fluid Mechanics.

[7]  К Е Вейн,et al.  Математические аспекты поверхностных волн на воде@@@Mathematical aspects of surface water waves , 2007 .

[8]  M. Okamura On the enclosed crest angle of the limiting profile of standing waves , 1998 .

[9]  Jeffrey S. Ely,et al.  High-precision calculations of vortex sheet motion , 1994 .

[10]  E. Hille,et al.  Ordinary di?erential equations in the complex domain , 1976 .

[11]  R. Krasny Desingularization of periodic vortex sheet roll-up , 1986 .

[12]  S. Tanveer,et al.  Singularities in water waves and Rayleigh–Taylor instability , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[13]  R. Krasny A study of singularity formation in a vortex sheet by the point-vortex approximation , 1986, Journal of Fluid Mechanics.

[14]  T. Hou,et al.  Removing the stiffness from interfacial flows with surface tension , 1994 .

[15]  Y. Kaneda,et al.  Spontaneous Singularity Formation in the Shape of Vortex Sheet in Three-Dimensional Flow , 1994 .

[16]  C. K. Thornhill,et al.  Part II. finite periodic stationary gravity waves in a perfect liquid , 1952, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[17]  Anthony J. Roberts,et al.  Standing waves in deep water: Their stability and extreme form , 1992 .

[19]  J. T. Beale,et al.  Large-time regularity of viscous surface waves , 1984 .

[20]  Stephen J. Cowley,et al.  On the formation of Moore curvature singularities in vortex sheets , 1999, Journal of Fluid Mechanics.

[21]  W. Craig,et al.  Mathematical aspects of surface water waves , 2007 .

[22]  Michael Selwyn Longuet-Higgins,et al.  The deformation of steep surface waves on water - I. A numerical method of computation , 1976, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[23]  T. Hou,et al.  Singularity formation in three-dimensional vortex sheets , 2001 .

[24]  M. Longuet-Higgins,et al.  On the breaking of standing waves by falling jets , 2001 .

[25]  D. W. Moore,et al.  The rise and distortion of a two‐dimensional gas bubble in an inviscid liquid , 1989 .

[26]  Thomas Y. Hou,et al.  Convergence of a non-stiff boundary integral method for interfacial flows with surface tension , 1998, Math. Comput..

[27]  Michael Shelley,et al.  A study of singularity formation in vortex-sheet motion by a spectrally accurate vortex method , 1992, Journal of Fluid Mechanics.

[28]  J. Bowles,et al.  Fourier Analysis of Numerical Approximations of Hyperbolic Equations , 1987 .

[29]  Osvaldo Daniel Cortázar,et al.  The Rayleigh-Taylor instability , 2006 .

[30]  Tadayoshi Kano,et al.  Sur les ondes de surface de l’eau avec une justification mathématique des équations des ondes en eau peu profonde , 1979 .

[31]  Catherine Sulem,et al.  Tracing complex singularities with spectral methods , 1983 .

[32]  M. Longuet-Higgins A class of exact, time-dependent, free-surface flows , 1972, Journal of Fluid Mechanics.

[33]  M. Longuet-Higgins Parametric solutions for breaking waves , 1982, Journal of Fluid Mechanics.

[34]  Steven A. Orszag,et al.  Generalized vortex methods for free-surface flow problems , 1982, Journal of Fluid Mechanics.

[35]  Gregory Baker,et al.  Stable Methods for Vortex Sheet Motion in the Presence of Surface Tension , 1998, SIAM J. Sci. Comput..

[36]  Sijue Wu,et al.  Well-posedness in Sobolev spaces of the full water wave problem in 3-D , 1999 .

[37]  Steven A. Orszag,et al.  Vortex simulations of the Rayleigh–Taylor instability , 1980 .

[38]  Russel E. Caflisch,et al.  A nonlinear approximation for vortex sheet evolution and singularity formation , 1990 .

[39]  D. W. Moore,et al.  The spontaneous appearance of a singularity in the shape of an evolving vortex sheet , 1979, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[40]  S. Orszag,et al.  Rayleigh-Taylor instability of fluid layers , 1987, Journal of Fluid Mechanics.

[41]  Thomas Y. Hou,et al.  Numerical Solutions to Free Boundary Problems , 1995, Acta Numerica.

[42]  Sijue Wu,et al.  Almost global wellposedness of the 2-D full water wave problem , 2009, 0910.2473.

[43]  Carl E. Pearson,et al.  Functions of a complex variable - theory and technique , 2005 .

[44]  O. D. Kellogg Foundations of potential theory , 1934 .

[45]  P. Germain,et al.  Global solutions for the gravity water waves equation in dimension 3 , 2009, 0906.5343.

[46]  Steven A. Orszag,et al.  CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .

[47]  M. Lombardo,et al.  Singularity tracking for Camassa-Holm and Prandtl's equations , 2006 .

[48]  Sijue Wu,et al.  Well-posedness in Sobolev spaces of the full water wave problem in 2-D , 1997 .

[49]  Russel E. Caflisch,et al.  Singular solutions and ill-posedness for the evolution of vortex sheets , 1989 .

[50]  Kuznetsov,et al.  Formation of singularities on the free surface of an ideal fluid. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[51]  S. SINGULARITIES IN THE CLASSICAL RAYLEIGH-TAYLOR FLOW : FORMATION AND SUBSEQUENT MOTION , 2022 .