Evaluation of Bioactivity of Strigolactone-Related Molecules by a Quantitative Luminometer Bioassay.

[1]  H. Bouwmeester,et al.  Strigolactones. A New Plant Hormone with Promising Features. , 2019, Angewandte Chemie.

[2]  Karen Siu-Ting,et al.  Strigolactone synthesis is ancestral in land plants, but canonical strigolactone signalling is a flowering plant innovation , 2019, BMC Biology.

[3]  J. Noel,et al.  Strigolactone perception and deactivation by a hydrolase receptor DWARF14 , 2019, Nature Communications.

[4]  P. McCourt,et al.  A femtomolar-range suicide germination stimulant for the parasitic plant Striga hermonthica , 2018, Science.

[5]  O. Leyser,et al.  Structural Plasticity of D3-D14 Ubiquitin Ligase in Strigolactone Signaling , 2018, Nature.

[6]  I. Takahashi,et al.  Target-based selectivity of strigolactone agonists and antagonists in plants and their potential use in agriculture , 2018, Journal of experimental botany.

[7]  F. Cardinale,et al.  Strigolactones: mediators of osmotic stress responses with a potential for agrochemical manipulation of crop resilience , 2018, Journal of experimental botany.

[8]  F. Spyrakis,et al.  Structure–activity relationships of strigolactones via a novel, quantitative in planta bioassay , 2018, Journal of Experimental Botany.

[9]  Lei Wang,et al.  DWARF14, A Receptor Covalently Linked with the Active Form of Strigolactones, Undergoes Strigolactone-Dependent Degradation in Rice , 2017, Front. Plant Sci..

[10]  G. Wong,et al.  Evolution of strigolactone receptors by gradual neo-functionalization of KAI2 paralogues , 2017, BMC Biology.

[11]  Matias D. Zurbriggen,et al.  StrigoQuant: A genetically encoded biosensor for quantifying strigolactone activity and specificity , 2016, Science Advances.

[12]  Yuna Sun,et al.  DWARF14 is a non-canonical hormone receptor for strigolactone , 2016, Nature.

[13]  J. Chory,et al.  An histidine covalent receptor/butenolide complex mediates strigolactone perception , 2016, Nature chemical biology.

[14]  O. Leyser,et al.  SMAX1-LIKE/D53 Family Members Enable Distinct MAX2-Dependent Responses to Strigolactones and Karrikins in Arabidopsis , 2015, Plant Cell.

[15]  Zefu Lu,et al.  Strigolactone Signaling in Arabidopsis Regulates Shoot Development by Targeting D53-Like SMXL Repressor Proteins for Ubiquitination and Degradation[OPEN] , 2015, Plant Cell.

[16]  P. Griffin,et al.  Destabilization of strigolactone receptor DWARF14 by binding of ligand and E3-ligase signaling effector DWARF3 , 2015, Cell Research.

[17]  P. McCourt,et al.  Detection of parasitic plant suicide germination compounds using a high-throughput Arabidopsis HTL/KAI2 strigolactone perception system. , 2014, Chemistry & biology.

[18]  M. Chagoyen,et al.  Strigolactone Promotes Degradation of DWARF14, an α/β Hydrolase Essential for Strigolactone Signaling in Arabidopsis[W] , 2014, Plant Cell.

[19]  Haiyang Wang,et al.  D14-SCFD3-dependent degradation of D53 regulates strigolactone signaling , 2013, Nature.

[20]  Q. Qian,et al.  DWARF 53 acts as a repressor of strigolactone signalling in rice , 2013, Nature.

[21]  R. Newcomb,et al.  DAD2 Is an α/β Hydrolase Likely to Be Involved in the Perception of the Plant Branching Hormone, Strigolactone , 2012, Current Biology.

[22]  S. Clough,et al.  Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. , 1998, The Plant journal : for cell and molecular biology.