New trends in peptide-based anti-biofilm strategies: a review of recent achievements and bioinformatic approaches

Antimicrobial peptides (AMPs) have a broad spectrum of activity and unspecific mechanisms of action. Therefore, they are seen as valid alternatives to overcome clinically relevant biofilms and reduce the chance of acquired resistance. This paper reviews AMPs and anti-biofilm AMP-based strategies and discusses ongoing and future work. Recent studies report successful AMP-based prophylactic and therapeutic strategies, several databases catalogue AMP information and analysis tools, and novel bioinformatics tools are supporting AMP discovery and design. However, most AMP studies are performed with planktonic cultures, and most studies on sessile cells test AMPs on growing rather than mature biofilms. Promising preliminary synergistic studies have to be consubstantiated and the study of functionalized coatings with AMPs must be further explored. Standardized operating protocols, to enforce the repeatability and reproducibility of AMP anti-biofilm tests, and automated means of screening and processing the ever-expanding literature are still missing.

[1]  Marcos Dipinto,et al.  Discriminant analysis , 2020, Predictive Analytics.

[2]  Michele Magrane,et al.  UniProt Knowledgebase: a hub of integrated protein data , 2011, Database J. Biol. Databases Curation.

[3]  Artem Cherkasov,et al.  Short linear cationic antimicrobial peptides: screening, optimizing, and prediction. , 2008, Methods in molecular biology.

[4]  R. Epand,et al.  Lipid domains in bacterial membranes and the action of antimicrobial agents. , 2009, Biochimica et biophysica acta.

[5]  Robert D. Finn,et al.  HMMER web server: interactive sequence similarity searching , 2011, Nucleic Acids Res..

[6]  J. Wimpenny,et al.  Heterogeneity in biofilms. , 2000, FEMS microbiology reviews.

[7]  W. Song,et al.  Disinfection of maxillofacial silicone elastomer using a novel antimicrobial agent: recombinant human beta-defensin-3 , 2009, European Journal of Clinical Microbiology & Infectious Diseases.

[8]  Clinical,et al.  Performance standards for antimicrobial disk susceptibility tests : approved standard , 2006 .

[9]  B. Stec,et al.  Plant thionins – the structural perspective , 2006, Cellular and Molecular Life Sciences CMLS.

[10]  M. Chan-Park,et al.  Covalent immobilization of nisin on multi-walled carbon nanotubes: superior antimicrobial and anti-biofilm properties. , 2011, Nanoscale.

[11]  A. Schmidtchen,et al.  Highly Selective End-Tagged Antimicrobial Peptides Derived from PRELP , 2011, PloS one.

[12]  L. Ni,et al.  Antimicrobial and antibiofilm activity of pleurocidin against cariogenic microorganisms , 2011, Peptides.

[13]  A. Magill,et al.  Application of 3D-QSAR for identification of descriptors defining bioactivity of antimicrobial peptides. , 2007, Journal of medicinal chemistry.

[14]  A. Forsgren,et al.  Effect of lactoferrin on interaction of Prevotella intermedia with plasma and subepithelial matrix proteins. , 1994, Oral microbiology and immunology.

[15]  P. Savage,et al.  Antibacterial properties of cationic steroid antibiotics. , 2002, FEMS microbiology letters.

[16]  S. Levitz,et al.  Histatins, a novel family of histidine-rich proteins in human parotid secretion. Isolation, characterization, primary structure, and fungistatic effects on Candida albicans. , 1988, The Journal of biological chemistry.

[17]  V. Korolik,et al.  Inhibition of Bacterial Biofilm Formation and Swarming Motility by a Small Synthetic Cationic Peptide , 2012, Antimicrobial Agents and Chemotherapy.

[18]  Takashi Iwasaki,et al.  In vitro Activity of Diastereomeric Antimicrobial Peptides Alone and in Combination with Antibiotics against Methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa , 2007 .

[19]  A. Zamyatnin EROP-Moscow: specialized data bank for endogenous regulatory oligopeptides. , 1991, Protein sequences & data analysis.

[20]  C. Pradier,et al.  Antibacterial surfaces developed from bio-inspired approaches. , 2012, Acta biomaterialia.

[21]  T. Algara,et al.  Antimicrobial and antifungal activities of a novel cationic antimicrobial peptide, omiganan, in experimental skin colonisation models. , 2009, International journal of antimicrobial agents.

[22]  Paul Stoodley,et al.  Evolving concepts in biofilm infections , 2009, Cellular microbiology.

[23]  Sunkyu Kim,et al.  Synergistic Inhibitory Effect of Cationic Peptides and Antimicrobial Agents on the Growth of Oral Streptococci , 2003, Caries Research.

[24]  M. A. Barracco,et al.  Antimicrobial peptides in crustaceans , 2010 .

[25]  Oscar P. Kuipers,et al.  BAGEL2: mining for bacteriocins in genomic data , 2010, Nucleic Acids Res..

[26]  M. W. Reij,et al.  Development of a Standard Test To Assess the Resistance of Staphylococcus aureus Biofilm Cells to Disinfectants , 2002, Applied and Environmental Microbiology.

[27]  Lincoln Stein,et al.  The Plant Ontology Database: a community resource for plant structure and developmental stages controlled vocabulary and annotations , 2008, Nucleic Acids Res..

[28]  S. Molin,et al.  Biofilm Induced Tolerance towards Antimicrobial Peptides , 2008, PloS one.

[29]  R. Hancock,et al.  Biomembrane interactions reveal the mechanism of action of surface-immobilized host defense IDR-1010 peptide. , 2012, Chemistry & biology.

[30]  Kai Hilpert,et al.  Sequence requirements and an optimization strategy for short antimicrobial peptides. , 2006, Chemistry & biology.

[31]  K. Silverstein,et al.  Genome Organization of More Than 300 Defensin-Like Genes in Arabidopsis1[w] , 2005, Plant Physiology.

[32]  B. Peters,et al.  Vaccine development in Staphylococcus aureus: taking the biofilm phenotype into consideration , 2010, FEMS immunology and medical microbiology.

[33]  Jian Zhang,et al.  The Protein Ontology: a structured representation of protein forms and complexes , 2010, Nucleic Acids Res..

[34]  M. Hamilton,et al.  Statistical assessment of a laboratory method for growing biofilms. , 2005, Microbiology.

[35]  J. AfolayanA.,et al.  Assessment techniques of antimicrobial properties of natural compounds of plant origin : current methods and future trends , 2008 .

[36]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[37]  Christian Kandt,et al.  Computer simulation of antimicrobial peptides. , 2007, Current medicinal chemistry.

[38]  P. A. Raj,et al.  Structure of human salivary histatin 5 in aqueous and nonaqueous solutions. , 1998, Biopolymers.

[39]  J. Andrews BSAC standardized disc susceptibility testing method. , 2001, The Journal of antimicrobial chemotherapy.

[40]  Samir N. Patel,et al.  Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria; approved guideline , 2006 .

[41]  S. Molin,et al.  Colistin-tobramycin combinations are superior to monotherapy concerning the killing of biofilm Pseudomonas aeruginosa. , 2010, The Journal of infectious diseases.

[42]  A. Peschel,et al.  Molecular Basis of Resistance to Muramidase and Cationic Antimicrobial Peptide Activity of Lysozyme in Staphylococci , 2007, PLoS pathogens.

[43]  A. Benko-Iseppon,et al.  Plant antimicrobial peptides: an overview of SuperSAGE transcriptional profile and a functional review. , 2010, Current protein & peptide science.

[44]  P. Meherji,et al.  Spermicidal activity of Magainins: in vitro and in vivo studies. , 1996, Contraception.

[45]  Ramesh Rathinakumar,et al.  Biomolecular engineering by combinatorial design and high-throughput screening: small, soluble peptides that permeabilize membranes. , 2008, Journal of the American Chemical Society.

[46]  Vladimir Brusic,et al.  Prediction of MHC class II-binding peptides using an evolutionary algorithm and artificial neural network , 1998, Bioinform..

[47]  Michael Thompson,et al.  Harmonized guidelines for single-laboratory validation of methods of analysis (IUPAC Technical Report) , 2002 .

[48]  C. Gemmell,et al.  In vivo efficacy of the antimicrobial peptide ranalexin in combination with the endopeptidase lysostaphin against wound and systemic meticillin-resistant Staphylococcus aureus (MRSA) infections. , 2010, International journal of antimicrobial agents.

[49]  C. Shaw,et al.  Novel dermaseptin, adenoregulin and caerin homologs from the Central American red-eyed leaf frog, Agalychnis callidryas, revealed by functional peptidomics of defensive skin secretion. , 2008, Biochimie.

[50]  A. Ulrich,et al.  Synergistic Transmembrane Alignment of the Antimicrobial Heterodimer PGLa/Magainin* , 2006, Journal of Biological Chemistry.

[51]  Sean R. Eddy,et al.  Profile hidden Markov models , 1998, Bioinform..

[52]  R. Gallo,et al.  AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. , 2009, Trends in immunology.

[53]  R. Hancock,et al.  Synergistic Interactions between Mammalian Antimicrobial Defense Peptides , 2001, Antimicrobial Agents and Chemotherapy.

[54]  J. Mattick,et al.  Extracellular DNA required for bacterial biofilm formation. , 2002, Science.

[55]  B. Mallard,et al.  Changes in Holstein cow milk and serum proteins during intramammary infection with three different strains of Staphylococcus aureus , 2011, BMC veterinary research.

[56]  M. Galas,et al.  A new method for normalized interpretation of antimicrobial resistance from disk test results for comparative purposes. , 2003, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[57]  S. Kjelleberg,et al.  A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms , 2006, Molecular microbiology.

[58]  Y. Shai,et al.  Interaction of fluorescently labeled pardaxin and its analogues with lipid bilayers. , 1991, The Journal of biological chemistry.

[59]  V. Saba,et al.  Protective effects of the combination of alpha-helical antimicrobial peptides and rifampicin in three rat models of Pseudomonas aeruginosa infection. , 2008, The Journal of antimicrobial chemotherapy.

[60]  Y. Porat,et al.  In vitro assessment of antimicrobial peptides as potential agents against several oral bacteria. , 2006, The Journal of antimicrobial chemotherapy.

[61]  T. Tolker-Nielsen,et al.  Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB‐oprM genes , 2008, Molecular microbiology.

[62]  L. Ni,et al.  An in vitro synergetic evaluation of the use of nisin and sodium fluoride or chlorhexidine against Streptococcus mutans , 2011, Peptides.

[63]  Vladimir B. Bajic,et al.  DAMPD: a manually curated antimicrobial peptide database , 2011, Nucleic Acids Res..

[64]  TWO-WEEK Loan COpy,et al.  University of California , 1886, The American journal of dental science.

[65]  H. Duclohier,et al.  Antimicrobial peptides and peptaibols, substitutes for conventional antibiotics. , 2010, Current pharmaceutical design.

[66]  J. Costerton,et al.  Bacterial biofilms: a common cause of persistent infections. , 1999, Science.

[67]  A. Bahar,et al.  Antimicrobial Peptides , 2013, Pharmaceuticals.

[68]  A. Ivankin,et al.  A miniature mimic of host defense peptides with systemic antibacterial efficacy , 2010, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[69]  Xia Li,et al.  APD2: the updated antimicrobial peptide database and its application in peptide design , 2008, Nucleic Acids Res..

[70]  E. Greenberg,et al.  A component of innate immunity prevents bacterial biofilm development , 2002, Nature.

[71]  Thomas Bjarnsholt,et al.  Antibiotic resistance of bacterial biofilms. , 2010, International journal of antimicrobial agents.

[72]  P. Nicolas,et al.  The dermaseptin superfamily: a gene-based combinatorial library of antimicrobial peptides. , 2009, Biochimica et biophysica acta.

[73]  M. Zasloff Antimicrobial peptides of multicellular organisms , 2002, Nature.

[74]  Takanori Nakamura,et al.  Tachyplesin, a Class of Antimicrobial Peptide from the Hemocytes of the Horseshoe Crab (Tach ypleus tridentatus) , 1988 .

[75]  Dirk Lange,et al.  The biocompatibility and biofilm resistance of implant coatings based on hydrophilic polymer brushes conjugated with antimicrobial peptides. , 2011, Biomaterials.

[76]  D. Craik,et al.  Cyclotides: a patent review , 2011, Expert opinion on therapeutic patents.

[77]  F. Goñi,et al.  Release of lipid vesicle contents by the bacterial protein toxin alpha-haemolysin. , 1993, Biochimica et biophysica acta.

[78]  R. Hancock,et al.  Alternative mechanisms of action of cationic antimicrobial peptides on bacteria , 2007, Expert review of anti-infective therapy.

[79]  V. Saba,et al.  Pre-treatment of central venous catheters with the cathelicidin BMAP-28 enhances the efficacy of antistaphylococcal agents in the treatment of experimental catheter-related infection , 2006, Peptides.

[80]  M. Zanetti,et al.  The cathelicidins--structure, function and evolution. , 2005, Current protein & peptide science.

[81]  Xuedong Zhou,et al.  Effect of the antimicrobial decapeptide KSL on the growth of oral pathogens and Streptococcus mutans biofilm. , 2011, International journal of antimicrobial agents.

[82]  R. Hancock,et al.  Cationic peptides: a new source of antibiotics. , 1998, Trends in biotechnology.

[83]  J. Andrews BSAC standardized disc susceptibility testing method , 2001 .

[84]  P. Coote,et al.  Bactericidal synergy of lysostaphin in combination with antimicrobial peptides , 2011, European Journal of Clinical Microbiology & Infectious Diseases.

[85]  Jian He,et al.  Enhancement of Antimicrobial Activity against Pseudomonas aeruginosa by Coadministration of G10KHc and Tobramycin , 2006, Antimicrobial Agents and Chemotherapy.

[86]  Huan Liu,et al.  Incremental Feature Selection , 1998, Applied Intelligence.

[87]  Gajendra P. S. Raghava,et al.  Analysis and prediction of antibacterial peptides , 2007, BMC Bioinformatics.

[88]  D. Lipman,et al.  Rapid and sensitive protein similarity searches. , 1985, Science.

[89]  G. Schneider,et al.  Designing antimicrobial peptides: form follows function , 2011, Nature Reviews Drug Discovery.

[90]  S. Piotto,et al.  YADAMP: yet another database of antimicrobial peptides. , 2012, International journal of antimicrobial agents.

[91]  G. Tew,et al.  Activity of an Antimicrobial Peptide Mimetic against Planktonic and Biofilm Cultures of Oral Pathogens , 2007, Antimicrobial Agents and Chemotherapy.

[92]  A. Waring,et al.  Peptide-lipid interactions of the beta-hairpin antimicrobial peptide tachyplesin and its linear derivatives from solid-state NMR. , 2006, Biochimica et biophysica acta.

[93]  K. Chou,et al.  Prediction of Antimicrobial Peptides Based on Sequence Alignment and Feature Selection Methods , 2011, PloS one.

[94]  Isabelle Mougenot,et al.  PenBase, the shrimp antimicrobial peptide penaeidin database: sequence-based classification and recommended nomenclature. , 2006, Developmental and comparative immunology.

[95]  J. van Marle,et al.  Antimicrobial and antibiofilm activity of LL-37 and its truncated variants against Burkholderia pseudomallei. , 2012, International journal of antimicrobial agents.

[96]  Gajendra P. S. Raghava,et al.  AntiBP2: improved version of antibacterial peptide prediction , 2010, BMC Bioinformatics.

[97]  Olivier Taboureau,et al.  Design of Novispirin Antimicrobial Peptides by Quantitative Structure–Activity Relationship , 2006, Chemical biology & drug design.

[98]  W. Shi,et al.  Targeted Killing of Streptococcus mutans by a Pheromone-Guided “Smart” Antimicrobial Peptide , 2006, Antimicrobial Agents and Chemotherapy.

[99]  Robert E W Hancock,et al.  Antibacterial surfaces based on polymer brushes: investigation on the influence of brush properties on antimicrobial peptide immobilization and antimicrobial activity. , 2011, Biomacromolecules.

[100]  Christel Daniel-Le Bozec,et al.  The DebugIT Core Ontology: semantic integration of antibiotics resistance patterns , 2010, MedInfo.

[101]  R. Hancock,et al.  Sublethal Concentrations of Pleurocidin-Derived Antimicrobial Peptides Inhibit Macromolecular Synthesis in Escherichia coli , 2002, Antimicrobial Agents and Chemotherapy.

[102]  A. Demain,et al.  Do we need new antibiotics? The search for new targets and new compounds , 2010, Journal of Industrial Microbiology & Biotechnology.

[103]  C. Lan,et al.  Human Antimicrobial Peptide LL-37 Inhibits Adhesion of Candida albicans by Interacting with Yeast Cell-Wall Carbohydrates , 2011, PloS one.

[104]  H. Abriouel,et al.  Bacteriocin-based strategies for food biopreservation. , 2007, International journal of food microbiology.

[105]  J. Swings,et al.  Intra- and interlaboratory performance of antibiotic disk-diffusion-susceptibility testing of bacterial control strains of relevance for monitoring aquaculture environments. , 2005, Diseases of aquatic organisms.

[106]  Egon L. Willighagen,et al.  OSCAR4: a flexible architecture for chemical text-mining , 2011, J. Cheminformatics.

[107]  Artem Cherkasov,et al.  QSAR modeling and computer‐aided design of antimicrobial peptides , 2008, Journal of peptide science : an official publication of the European Peptide Society.

[108]  Goran Nenadic,et al.  LINNAEUS: A species name identification system for biomedical literature , 2010, BMC Bioinformatics.

[109]  Samuel I. Miller,et al.  Differentiation and Distribution of Colistin- and Sodium Dodecyl Sulfate-Tolerant Cells in Pseudomonas aeruginosa Biofilms , 2006, Journal of bacteriology.

[110]  Håvard Jenssen,et al.  Antimicrobial peptides on calcium phosphate-coated titanium for the prevention of implant-associated infections. , 2010, Biomaterials.

[111]  C. Padilla,et al.  In vitro antimicrobial effect of bacteriocin PsVP-10 in combination with chlorhexidine and triclosan against Streptococcus mutans and Streptococcus sobrinus strains. , 2009, Archives of oral biology.

[112]  Y. Shai,et al.  Structure and orientation of the mammalian antibacterial peptide cecropin P1 within phospholipid membranes. , 1996, Journal of molecular biology.

[113]  T. Miyata,et al.  Tachyplesin, a class of antimicrobial peptide from the hemocytes of the horseshoe crab (Tachypleus tridentatus). Isolation and chemical structure. , 1988, The Journal of biological chemistry.

[114]  Clinical,et al.  Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically : Approved standard , 2006 .

[115]  Roger Beuerman,et al.  Defensins knowledgebase: a manually curated database and information source focused on the defensins family of antimicrobial peptides , 2006, Nucleic Acids Res..

[116]  T. Calsa,et al.  In Silico Identification of Plant-Derived Antimicrobial Peptides , 2011 .

[117]  C. Pradier,et al.  Optimized grafting of antimicrobial peptides on stainless steel surface and biofilm resistance tests. , 2011, Colloids and surfaces. B, Biointerfaces.

[118]  H. Nelis,et al.  Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. , 2008, Journal of microbiological methods.

[119]  Fabiano C. Fernandes,et al.  A Wide Antimicrobial Peptides Search Method Using Fuzzy Modeling , 2009, BSB.

[120]  A. Roli Artificial Neural Networks , 2012, Lecture Notes in Computer Science.

[121]  Melissa H. Brown,et al.  Antimicrobial Peptides – Promising Alternatives to Conventional Antibiotics , 2011, Journal of Molecular Microbiology and Biotechnology.

[122]  B. Bechinger,et al.  A spectroscopic study of the membrane interaction of the antimicrobial peptide Pleurocidin , 2006, Molecular membrane biology.

[123]  H. Sahl,et al.  The co-evolution of host cationic antimicrobial peptides and microbial resistance , 2006, Nature Reviews Microbiology.

[124]  A. Barron,et al.  Peptoids that mimic the structure, function, and mechanism of helical antimicrobial peptides , 2008, Proceedings of the National Academy of Sciences.

[125]  Philip S. Stewart,et al.  Contributions of Antibiotic Penetration, Oxygen Limitation, and Low Metabolic Activity to Tolerance of Pseudomonas aeruginosa Biofilms to Ciprofloxacin and Tobramycin , 2003, Antimicrobial Agents and Chemotherapy.

[126]  C. Fjell,et al.  Identification of novel antibacterial peptides by chemoinformatics and machine learning. , 2009, Journal of medicinal chemistry.

[127]  Riadh Hammami,et al.  Current trends in antimicrobial agent research: chemo- and bioinformatics approaches. , 2010, Drug discovery today.

[128]  C. Rock,et al.  Prediction of Mechanisms of Action of Antibacterial Compounds by Gene Expression Profiling , 2004, Antimicrobial Agents and Chemotherapy.

[129]  Shreyas Karnik,et al.  CAMP: a useful resource for research on antimicrobial peptides , 2009, Nucleic Acids Res..

[130]  R. Zuckermann,et al.  Structure/function analysis of peptoid/lipitoid:DNA complexes. , 2003, Journal of pharmaceutical sciences.

[131]  Riadh Hammami,et al.  BACTIBASE: a new web-accessible database for bacteriocin characterization , 2007, BMC Microbiology.

[132]  A. Pokorny,et al.  Mechanism and Kinetics of δ-Lysin Interaction with Phospholipid Vesicles† , 2002 .

[133]  G. Stephanopoulos,et al.  Controlling the release of peptide antimicrobial agents from surfaces. , 2010, Biomaterials.

[134]  F. Tangy,et al.  Dermaseptins and Magainins: Antimicrobial Peptides from Frogs' Skin—New Sources for a Promising Spermicides Microbicides—A Mini Review , 2009, Journal of biomedicine & biotechnology.

[135]  H Beyenal,et al.  Growing reproducible biofilms with respect to structure and viable cell counts. , 2001, Journal of microbiological methods.

[136]  Sunil K. Vooturi,et al.  Synthetic membrane-targeted antibiotics. , 2010, Current medicinal chemistry.

[137]  Scott N. Dean,et al.  Natural and synthetic cathelicidin peptides with anti-microbial and anti-biofilm activity against Staphylococcus aureus , 2011, BMC Microbiology.

[138]  P. Stewart,et al.  Antimicrobial Penetration and Efficacy in an In Vitro Oral Biofilm Model , 2011, Antimicrobial Agents and Chemotherapy.

[139]  J. Svendsen,et al.  High in vitro antimicrobial activity of synthetic antimicrobial peptidomimetics against staphylococcal biofilms. , 2008, The Journal of antimicrobial chemotherapy.

[140]  Bono Lučić,et al.  Knowledge-based computational methods for identifying or designing novel, non-homologous antimicrobial peptides , 2011, European Biophysics Journal.

[141]  K. Tateda,et al.  Efficacy of colistin combination therapy in a mouse model of pneumonia caused by multidrug-resistant Pseudomonas aeruginosa. , 2009, The Journal of antimicrobial chemotherapy.

[142]  Seong-Cheol Park,et al.  The Role of Antimicrobial Peptides in Preventing Multidrug-Resistant Bacterial Infections and Biofilm Formation , 2011, International journal of molecular sciences.

[143]  Zhengshuang Shi,et al.  Antimicrobial dendrimer active against Escherichia coli biofilms. , 2009, Bioorganic & medicinal chemistry letters.

[144]  P. Coote,et al.  Potent, synergistic inhibition of Staphylococcus aureus upon exposure to a combination of the endopeptidase lysostaphin and the cationic peptide ranalexin. , 2007, The Journal of antimicrobial chemotherapy.

[145]  Cunbao Liu,et al.  The cathelicidin-like peptide derived from panda genome is a potential antimicrobial peptide. , 2012, Gene.

[146]  H. Westerhoff,et al.  Functional synergism of the magainins PGLa and magainin-2 in Escherichia coli, tumor cells and liposomes. , 1995, European journal of biochemistry.

[147]  Xiaohui Chen,et al.  Phylloseptin-1 (PSN-1) from Phyllomedusa sauvagei skin secretion: a novel broad-spectrum antimicrobial peptide with antibiofilm activity. , 2010, Molecular immunology.

[148]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[149]  Riadh Hammami,et al.  PhytAMP: a database dedicated to antimicrobial plant peptides , 2008, Nucleic Acids Res..

[150]  A. Rinaldi,et al.  Beyond natural antimicrobial peptides: multimeric peptides and other peptidomimetic approaches , 2011, Cellular and Molecular Life Sciences.

[151]  Artem Cherkasov,et al.  BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btm068 Databases and ontologies AMPer: a database and an automated discovery tool for antimicrobial peptides , 2022 .

[152]  Zhengxin Chen,et al.  RAPD: a database of recombinantly-produced antimicrobial peptides. , 2008, FEMS microbiology letters.

[153]  Wilhelm T S Huck,et al.  Antibacterial and antifouling polymer brushes incorporating antimicrobial peptide. , 2009, Bioconjugate chemistry.

[154]  A. Bocca,et al.  Phylloseptins: a novel class of anti-bacterial and anti-protozoan peptides from the Phyllomedusa genus , 2005, Peptides.

[155]  David Andreu,et al.  AMPA: an automated web server for prediction of protein antimicrobial regions , 2012, Bioinform..

[156]  K. Lewis,et al.  Riddle of Biofilm Resistance , 2001, Antimicrobial Agents and Chemotherapy.

[157]  B. Gibson,et al.  Biosynthesis and degradation of peptides derived from Xenopus laevis prohormones. , 1987, The Biochemical journal.

[158]  S J Ludtke,et al.  Membrane pores induced by magainin. , 1996, Biochemistry.

[159]  Michael Darsow,et al.  ChEBI: a database and ontology for chemical entities of biological interest , 2007, Nucleic Acids Res..

[160]  R. Kharidia,et al.  The activity of a small lytic peptide PTP-7 on Staphylococcus aureus biofilms , 2011, The Journal of Microbiology.

[161]  Martin A Hamilton,et al.  Comparative evaluation of biofilm disinfectant efficacy tests. , 2007, Journal of microbiological methods.

[162]  A. P. Fonseca,et al.  Optimization of processing conditions for the quantification of enterococci biofilms using microtitre-plates. , 2011, Journal of microbiological methods.

[163]  Burr Settles,et al.  ABNER: an open source tool for automatically tagging genes, proteins and other entity names in text , 2005 .

[164]  Ning-Sun Yang,et al.  Systems and Computational Biology - Molecular and Cellular Experimental Systems , 2011 .

[165]  H. Vogel,et al.  The expanding scope of antimicrobial peptide structures and their modes of action. , 2011, Trends in biotechnology.

[166]  T. Calsa,et al.  Bioinformatics-coupled molecular approaches for unravelling potential antimicrobial peptides coding genes in Brazilian native and crop plant species. , 2010, Current protein & peptide science.

[167]  M. Rocchi,et al.  Tachyplesin III and granulocyte-colony stimulating factor enhance the efficacy of tazobactam/piperacillin in a neutropenic mouse model of polymicrobial peritonitis , 2008, Peptides.

[168]  Lee Whitmore,et al.  The Peptaibol Database: a database for sequences and structures of naturally occurring peptaibols , 2004, Nucleic Acids Res..

[169]  W. Shi,et al.  Systematic Approach to Optimizing Specifically Targeted Antimicrobial Peptides against Streptococcus mutans , 2010, Antimicrobial Agents and Chemotherapy.

[170]  T-Y Kuo,et al.  Proteomic identification of membrane proteins regulating antimicrobial peptide resistance in Vibrio parahaemolyticus , 2010, Journal of applied microbiology.

[171]  Alexander A. Zamyatnin,et al.  The EROP-Moscow oligopeptide database , 2005, Nucleic Acids Res..

[172]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[173]  D. Phoenix,et al.  A study on the interactions of Aurein 2.5 with bacterial membranes. , 2009, Colloids and surfaces. B, Biointerfaces.

[174]  Artem Cherkasov,et al.  Use of artificial intelligence in the design of small peptide antibiotics effective against a broad spectrum of highly antibiotic-resistant superbugs. , 2009, ACS chemical biology.

[175]  Shunyi Zhu,et al.  Antimicrobial peptide-like genes in Nasonia vitripennis: a genomic perspective , 2010, BMC Genomics.

[176]  N. Minamino,et al.  Peptidomics-based discovery of an antimicrobial peptide derived from insulin-like growth factor-binding protein 5. , 2011, Journal of proteome research.

[177]  W. Kamysz,et al.  The antimicrobial peptide Tachyplesin III coated alone and in combination with intraperitoneal piperacillin-tazobactam prevents ureteral stent Pseudomonas infection in a rat subcutaneous pouch model , 2007, Peptides.

[178]  M. Dathe,et al.  Mode of action of cationic antimicrobial peptides defines the tethering position and the efficacy of biocidal surfaces. , 2012, Bioconjugate chemistry.

[179]  B. Dhawan,et al.  In vitro antimicrobial activity of alpha-melanocyte stimulating hormone against major human pathogen Staphylococcus aureus , 2009, Peptides.

[180]  B. Bechinger,et al.  Detergent-like actions of linear amphipathic cationic antimicrobial peptides. , 2006, Biochimica et biophysica acta.

[181]  K. Yamauchi,et al.  Inhibitory Effects of Lactoferrin on Growth and Biofilm Formation of Porphyromonas gingivalis and Prevotella intermedia , 2009, Antimicrobial Agents and Chemotherapy.

[182]  E. Bachère,et al.  Stylicins, a new family of antimicrobial peptides from the Pacific blue shrimp Litopenaeus stylirostris. , 2010, Molecular immunology.

[183]  Fuhui Long,et al.  Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy , 2003, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[184]  S. Blondelle,et al.  Optimization and high-throughput screening of antimicrobial peptides. , 2010, Current pharmaceutical design.

[185]  Roland Contreras,et al.  Human Antimicrobial Peptides: Defensins, Cathelicidins and Histatins , 2005, Biotechnology Letters.

[186]  M. Benincasa,et al.  Dual mode of action of Bac7, a proline-rich antibacterial peptide. , 2006, Biochimica et biophysica acta.

[187]  Davor Juretic,et al.  Computational Design of Highly Selective Antimicrobial Peptides , 2009, J. Chem. Inf. Model..

[188]  T. Mogi,et al.  Gramicidin S and polymyxins: the revival of cationic cyclic peptide antibiotics , 2009, Cellular and Molecular Life Sciences.

[189]  A. Tassanakajon,et al.  A comparative study of antimicrobial properties of crustinPm1 and crustinPm7 from the black tiger shrimp Penaeus monodon. , 2012, Developmental and comparative immunology.

[190]  M. Zilberman,et al.  Antibiotic-eluting medical devices for various applications. , 2008, Journal of controlled release : official journal of the Controlled Release Society.

[191]  R. Hammami,et al.  BACTIBASE second release: a database and tool platform for bacteriocin characterization , 2010, BMC Microbiology.

[192]  P. Fey Modality of bacterial growth presents unique targets: how do we treat biofilm-mediated infections? , 2010, Current opinion in microbiology.

[193]  Geoffrey J. Barton,et al.  Global network analysis of drug tolerance, mode of action and virulence in methicillin-resistant S. aureus , 2011, BMC Systems Biology.

[194]  A. Spormann,et al.  Antimicrobial Peptoids Are Effective against Pseudomonas aeruginosa Biofilms , 2011, Antimicrobial Agents and Chemotherapy.

[195]  F. Blecha,et al.  Antimicrobial peptides and bacteriocins: alternatives to traditional antibiotics , 2008, Animal Health Research Reviews.

[196]  M. Babu,et al.  Investigations on wound healing by using amphibian skin. , 1995, Indian journal of experimental biology.

[197]  M. Hamilton,et al.  Checking the validity of the harvesting and disaggregating steps in laboratory tests of surface disinfectants. , 2009, Journal of AOAC International.

[198]  John H. Rex,et al.  Method for antifungal disk diffusion susceptibility testing of yeasts : Approved guideline , 2009 .

[199]  S. Kalfas,et al.  Inhibitory effect of lactoferrin on the adhesion of Actinobacillus actinomycetemcotnitans and Prevotella intermedia to fibroblasts and epithelial cells , 1995, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[200]  O. Franco,et al.  Identification of an antifungal peptide from Trapa natans fruits with inhibitory effects on Candida tropicalis biofilm formation , 2011, Peptides.

[201]  M. Campa,et al.  Use of antimicrobial peptides against microbial biofilms: advantages and limits. , 2011, Current medicinal chemistry.

[202]  James M. Wilson,et al.  Cathelicidins - a family of multifunctional antimicrobial peptides , 2003, Cellular and Molecular Life Sciences CMLS.

[203]  X. Qiu,et al.  Research advances in the development of peptide antibiotics. , 2008, Journal of pharmaceutical sciences.

[204]  Christine D Wu,et al.  In vitro synergism between berberine and miconazole against planktonic and biofilm Candida cultures. , 2011, Archives of oral biology.

[205]  A. Ulrich,et al.  Synergistic transmembrane insertion of the heterodimeric PGLa/magainin 2 complex studied by solid-state NMR. , 2009, Biochimica et biophysica acta.

[206]  M. N. Melo,et al.  Antimicrobial peptides: linking partition, activity and high membrane-bound concentrations , 2009, Nature Reviews Microbiology.

[207]  Julio A Camarero,et al.  Biological activities of natural and engineered cyclotides, a novel molecular scaffold for peptide-based therapeutics. , 2010, Current molecular pharmacology.

[208]  F. Bikker,et al.  A cathelicidin-2-derived peptide effectively impairs Staphylococcus epidermidis biofilms. , 2011, International journal of antimicrobial agents.

[209]  I. Neundorf,et al.  Antimicrobial peptides with cell-penetrating peptide properties and vice versa , 2011, European Biophysics Journal.

[210]  J. Łukasiak,et al.  Efficacy of Tachyplesin III, Colistin, and Imipenem against a Multiresistant Pseudomonas aeruginosa Strain , 2007, Antimicrobial Agents and Chemotherapy.

[211]  G. H. Gudmundsson,et al.  Antimicrobial peptides important in innate immunity , 2011, The FEBS journal.

[212]  T. Ng,et al.  A non-specific lipid transfer protein with antifungal and antibacterial activities from the mung bean , 2004, Peptides.

[213]  Hailong Yang,et al.  Peptidomics and genomics analysis of novel antimicrobial peptides from the frog, Rana nigrovittata. , 2010, Genomics.

[214]  Samuel I. Miller,et al.  LPS, TLR4 and infectious disease diversity , 2005, Nature Reviews Microbiology.

[215]  M. Casu,et al.  Synthesis, characterization, antimicrobial activity and LPS-interaction properties of SB041, a novel dendrimeric peptide with antimicrobial properties , 2010, Peptides.

[216]  J. Costerton,et al.  Biofilms: Survival Mechanisms of Clinically Relevant Microorganisms , 2002, Clinical Microbiology Reviews.

[217]  J. Kader LIPID-TRANSFER PROTEINS IN PLANTS. , 1996, Annual review of plant physiology and plant molecular biology.

[218]  Jun Liu,et al.  Effect of a novel antimicrobial peptide chrysophsin-1 on oral pathogens and Streptococcus mutans biofilms , 2012, Peptides.

[219]  Clinical,et al.  Reference method for broth dilution antifungal susceptibility testing of yeasts : Approved standard , 2008 .

[220]  M. Vaara Polymyxins and their novel derivatives. , 2010, Current opinion in microbiology.

[221]  Mary Jane Ferraro,et al.  Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically : approved standard , 2000 .

[222]  R. Hancock,et al.  Human Host Defense Peptide LL-37 Prevents Bacterial Biofilm Formation , 2008, Infection and Immunity.

[223]  N. Brunner,et al.  Discovering the Mechanism of Action of Novel Antibacterial Agents through Transcriptional Profiling of Conditional Mutants , 2005, Antimicrobial Agents and Chemotherapy.

[224]  F. Goñi,et al.  Release of lipid vesicle contents by the bacterial protein toxin α-haemolysin , 1993 .

[225]  B. Ho,et al.  De Novo Design of Potent Antimicrobial Peptides , 2004, Antimicrobial Agents and Chemotherapy.

[226]  J.J. Hopfield,et al.  Artificial neural networks , 1988, IEEE Circuits and Devices Magazine.

[227]  Laszlo Otvos,et al.  Antibacterial peptides and proteins with multiple cellular targets , 2005, Journal of peptide science : an official publication of the European Peptide Society.

[228]  Mihai Pop,et al.  ARDB—Antibiotic Resistance Genes Database , 2008, Nucleic Acids Res..

[229]  M S Waterman,et al.  Identification of common molecular subsequences. , 1981, Journal of molecular biology.

[230]  R. P. Ross,et al.  Impact of the broad‐spectrum antimicrobial peptide, lacticin 3147, on Streptococcus mutans growing in a biofilm and in human saliva , 2011, Journal of applied microbiology.

[231]  C. Pradier,et al.  Elaboration of antibiofilm materials by chemical grafting of an antimicrobial peptide , 2011, Applied Microbiology and Biotechnology.

[232]  B. Cocks,et al.  Ancient Antimicrobial Peptides Kill Antibiotic-Resistant Pathogens: Australian Mammals Provide New Options , 2011, PloS one.

[233]  B Marshall,et al.  Gene Ontology Consortium: The Gene Ontology (GO) database and informatics resource , 2004, Nucleic Acids Res..

[234]  William C. Wimley,et al.  Antimicrobial Peptides: Successes, Challenges and Unanswered Questions , 2011, The Journal of Membrane Biology.

[235]  Tanguy Chau,et al.  Delivery, design, and mechanism of antimicrobial peptides , 2010 .

[236]  Henk J. Busscher,et al.  Role of Extracellular DNA in Initial Bacterial Adhesion and Surface Aggregation , 2010, Applied and Environmental Microbiology.

[237]  M Cristina L Martins,et al.  Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces. , 2011, Acta biomaterialia.