Linking the collisional history of the main asteroid belt to its dynamical excitation and depletion

Abstract The main belt is believed to have originally contained an Earth mass or more of material, enough to allow the asteroids to accrete on relatively short timescales. The present-day main belt, however, only contains ∼ 5 × 10 −4 Earth masses. Numerical simulations suggest that this mass loss can be explained by the dynamical depletion of main belt material via gravitational perturbations from planetary embryos and a newly-formed Jupiter. To explore this scenario, we combined dynamical results from Petit et al. [Petit, J. Morbidelli, A., Chambers, J., 2001. The primordial excitation and clearing of the asteroid belt. Icarus 153, 338–347] with a collisional evolution code capable of tracking how the main belt undergoes comminution and dynamical depletion over 4.6 Gyr [Bottke, W.F., Durda, D., Nesvorny, D., Jedicke, R., Morbidelli, A., Vokrouhlický, D., Levison, H., 2005. The fossilized size distribution of the main asteroid belt. Icarus 175, 111–140]. Our results were constrained by the main belt's size–frequency distribution, the number of asteroid families produced by disruption events from diameter D > 100 km parent bodies over the last 3–4 Gyr, the presence of a single large impact crater on Vesta's intact basaltic crust, and the relatively constant lunar and terrestrial impactor flux over the last 3 Gyr. We used our model to set limits on the initial size of the main belt as well as Jupiter's formation time. We find the most likely formation time for Jupiter was 3.3 ± 2.6 Myr after the onset of fragmentation in the main belt. These results are consistent with the estimated mean disk lifetime of 3 Myr predicted by Haisch et al. [Haisch, K.E., Lada, E.A., Lada, C.J., 2001. Disk frequencies and lifetimes in young clusters. Astrophys. J. 553, L153–L156]. The post-accretion main belt population, in the form of diameter D ≲ 1000 km planetesimals, was likely to have been 160 ± 40 times the current main belt's mass. This corresponds to 0.06 – 0.1 Earth masses, only a small fraction of the total mass thought to have existed in the main belt zone during planet formation. The remaining mass was most likely taken up by planetary embryos formed in the same region. Our results suggest that numerous D > 200 km planetesimals disrupted early in Solar System history, but only a small fraction of their fragments survived the dynamical depletion event described above. We believe this may explain the limited presence of iron-rich M-type, olivine-rich A-type, and non-Vesta V-type asteroids in the main belt today. The collisional lifetimes determined for main belt asteroids agree with the cosmic ray exposure ages of stony meteorites and are consistent with the limited collisional evolution detected among large Koronis family members. Using the same model, we investigated the near-Earth object (NEO) population. We show the shape of the NEO size distribution is a reflection of the main belt population, with main belt asteroids driven to resonances by Yarkovsky thermal forces. We used our model of the NEO population over the last 3 Gyr, which is consistent with the current population determined by telescopic and satellite data, to explore whether the majority of small craters ( D 0.1 – 1 km ) formed on Mercury, the Moon, and Mars were produced by primary impacts or by secondary impacts generated by ejecta from large craters. Our results suggest that most small craters formed on these worlds were a by-product of secondary rather than primary impacts.

[1]  David Vokrouhlický,et al.  YORP-induced long-term evolution of the spin state of small asteroids and meteoroids , 2002 .

[2]  Derek C. Richardson,et al.  The formation of asteroid satellites in large impacts: Results from numerical simulations , 2004 .

[3]  John E. Chambers,et al.  Primordial Excitation and Depletion of the Main Belt , 2002 .

[4]  Robert Jedicke,et al.  Collisional Models and Scaling Laws: A New Interpretation of the Shape of the Main-Belt Asteroid Size Distribution☆ , 1998 .

[5]  Robert Jedicke,et al.  Observational Selection Effects in Asteroid Surveys , 2002 .

[6]  R. Binzel,et al.  Mantle material in the main belt: Battered to bits? , 1996 .

[7]  Robert Jedicke,et al.  Evidence for asteroid space weathering from the Sloan Digital Sky Survey , 2005 .

[8]  Harold F. Levison,et al.  The Long-Term Dynamical Behavior of Short-Period Comets , 1993 .

[9]  Richard P. Binzel,et al.  Impact excavation on Asteroid 4 Vesta: Hubble Space Telescope results , 1997 .

[10]  H. F. Levison,et al.  Effects of Type I Migration on Terrestrial Planet Formation , 2004 .

[11]  W. Ip Gravitational stirring of the asteroid belt by Jupiter zone bodies , 1987 .

[12]  R. Greenberg,et al.  The collisional and dynamical evolution of the main-belt and NEA size distributions , 2005 .

[13]  R. Gomes Dynamical Effects of Planetary Migration on the Primordial Asteroid Belt , 1997 .

[14]  A. Harris A New Estimate of the Population of Small NEAs , 2002 .

[15]  P. Farinella,et al.  Origin and evolution of the Vesta asteroid family. , 1996 .

[16]  Becker,et al.  Lunar impact history from (40)Ar/(39)Ar dating of glass spherules , 2000, Science.

[17]  S. Ferraz-Mello,et al.  Origin of the Basaltic Asteroid 1459 Magnya: A Dynamical and Mineralogical Study of the Outer Main Belt , 2002 .

[18]  William K. Hartmann,et al.  Planetesimals to planets: Numerical simulation of collisional evolution , 1978 .

[19]  Harold F. Levison,et al.  On the Character and Consequences of Large Impacts in the Late Stage of Terrestrial Planet Formation , 1999 .

[20]  K. Tsiganis,et al.  Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets , 2005, Nature.

[21]  B. Viateau Mass and density of asteroids (16) Psyche and (121) Hermione , 2000 .

[22]  Alain Doressoundiram,et al.  Spectroscopic Properties of Asteroid Families , 2002 .

[23]  Kevin R. Housen,et al.  Some recent advances in the scaling of impact and explosion cratering , 1987 .

[24]  Jack J. Lissauer,et al.  Giant Planet Formation , 2010, 1006.5486.

[25]  K. Marti,et al.  COSMIC-RAY EXPOSURE HISTORY OF ORDINARY CHONDRITES , 1992 .

[26]  G. Wetherill,et al.  Dynamical chemical and isotopic evidence regarding the formation locations of asteroids and meteorites. , 1979 .

[27]  T. Nakamura,et al.  Basic nature of sub-km main-belt asteroids: their size and spatial distributions , 2004 .

[28]  J. Chambers,et al.  Planets in the asteroid belt , 2001 .

[29]  Z. Ivezic,et al.  Solar system objects observed in the Sloan Digital Sky Survey commissioning data , 2001 .

[30]  D. Britt,et al.  Asteroid Density, Porosity, and Structure , 2002 .

[31]  J. Wisdom,et al.  Chaotic behavior and the origin of the 3/1 Kirkwood gap , 1983 .

[32]  Richard P. Binzel,et al.  Phase II of the Small Main-Belt Asteroid Spectroscopic Survey: A Feature-Based Taxonomy , 2002 .

[33]  O. Eugster Cosmic-ray Exposure Ages of Meteorites and Lunar Rocks and Their Significance , 2003 .

[34]  P. Farinella,et al.  Wavy size distributions for collisional systems with a small-size cutoff , 1994 .

[35]  V. Safronov,et al.  Evolution of the protoplanetary cloud and formation of the earth and the planets , 1972 .

[36]  Y. Alibert,et al.  Migration and giant planet formation , 2004, astro-ph/0403574.

[37]  W. Benz,et al.  Catastrophic Disruptions Revisited , 1999 .

[38]  A. Cheng Collisional evolution of the asteroid belt , 2004 .

[39]  M. Podolak The contribution of small grains to the opacity of protoplanetary atmospheres , 2003 .

[40]  Richard P. Binzel,et al.  Spin vectors in the Koronis family: comprehensive results from two independent analyses of 213 rotation lightcurves , 2003 .

[41]  J. Petit,et al.  Large Scattered Planetesimals and the Excitation of the Small Body Belts , 1999 .

[42]  Ian Halliday,et al.  Detailed data for 259 fireballs from the Canadian camera network and inferences concerning the influx of large meteoroids , 1996 .

[43]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[44]  W. Bottke,et al.  Asteroidal collision probabilities , 1993 .

[45]  D. Vokrouhlický,et al.  Dynamical Spreading of Asteroid Families by the Yarkovsky Effect , 2001, Science.

[46]  E. Shoemaker Long-term variations in the impact cratering rate on Earth , 1998, Geological Society, London, Special Publications.

[47]  A. McEwen,et al.  The Phanerozoic Impact Cratering Rate: Evidence from the Farside of the Moon , 1997 .

[48]  J. Colwell Power-Law Confusion: You Say Incremental, I Say Differential , 1993 .

[49]  Alan W. Harris,et al.  Collisional evolution of asteroids - Populations, rotations, and velocities , 1979 .

[50]  Kevin R. Housen,et al.  Impact Cratering: A Geologic Process , 1987 .

[51]  R. Jedicke,et al.  Identifying near-Earth object families , 2005, astro-ph/0505270.

[52]  Time-variable cratering rates? , 2000, Science.

[53]  Vincenzo Zappala,et al.  Asteroid Family Identification , 2002 .

[54]  William H. Press,et al.  Numerical Recipes in FORTRAN - The Art of Scientific Computing, 2nd Edition , 1987 .

[55]  W. Ward Present obliquity oscillations of Mars: Fourth‐order accuracy in orbital e and I , 1979 .

[56]  T. Heppenheimer Secular resonances and the origin of eccentricities of Mars and the asteroids , 1979 .

[57]  Clark R. Chapman,et al.  Secondary craters on Europa and implications for cratered surfaces , 2005, Nature.

[58]  G. Wetherill An alternative model for the formation of the asteroids , 1992 .

[59]  J. Liou,et al.  Depletion of the Outer Asteroid Belt , 1997, Science.

[60]  Andrea Milani,et al.  Asteroid Proper Elements and the Dynamical Structure of the Asteroid Main Belt , 1994 .

[61]  Florczak,et al.  Discovery of a basaltic asteroid in the outer main belt , 2000, Science.

[62]  A. Boss,et al.  Protostars and Planets VI , 2000 .

[63]  M. Lecar,et al.  On the transport of bodies within and from the asteroid belt , 2000 .

[64]  Kevin R. Housen,et al.  The cratering database: Making code Jockeys honest , 2004 .

[65]  Robert Jedicke,et al.  From Magnitudes to Diameters: The Albedo Distribution of Near Earth Objects and the Earth Collision Hazard , 2002 .

[66]  Richard Greenberg,et al.  Impact-Induced Seismic Activity on Asteroid 433 Eros: A Surface Modification Process , 2004, Science.

[67]  Richard Greenberg Orbital interactions - A new geometrical formalism , 1982 .

[68]  A. Kovačević,et al.  Motion of the asteroid (13206) 1997GC22 and the mass of (16) Psyche , 2002 .

[69]  D. Morrison,et al.  Dealing with the Impact Hazard , 2002 .

[70]  Harold F. Levison,et al.  Recent Origin of the Solar System Dust Bands , 2003 .

[71]  J. Veverka,et al.  Collisional History of Gaspra , 1994 .

[72]  I. Shapiro,et al.  Mainbelt Asteroids: Results of Arecibo and Goldstone Radar Observations of 37 Objects during 1980-1995 , 1998 .

[73]  K. Keil,et al.  Consequences of explosive eruptions on small Solar System bodies: the case of the missing basalts on the aubrite parent body , 1991 .

[74]  D. Rubincam,et al.  Radiative Spin-up and Spin-down of Small Asteroids , 2000 .

[75]  E. Asphaug Impact origin of the Vesta family , 1997 .

[76]  L. Benner,et al.  Radar constraints on asteroid regolith properties using 433 Eros as ground truth , 2001 .

[77]  John E. Chambers,et al.  Making the Terrestrial Planets: N-Body Integrations of Planetary Embryos in Three Dimensions , 1998 .

[78]  M. Trieloff,et al.  Structure and thermal history of the H-chondrite parent asteroid revealed by thermochronometry , 2003, Nature.

[79]  D. Grinspoon Large impact events and atmospheric evolution on the terrestrial planets. , 1989 .

[80]  G. Lugmair,et al.  Chronology of asteroid accretion and differentation , 2002 .

[81]  George W. Wetherill,et al.  Accumulation of a swarm of small planetesimals , 1989 .

[82]  Clark R. Chapman,et al.  Could the Lunar “Late Heavy Bombardment” Have Been Triggered by the Formation of Uranus and Neptune? , 2001 .

[83]  J. S. Dohnanyi Collisional model of asteroids and their debris , 1969 .

[84]  R. Greenberg,et al.  Steady-State Size Distributions for Collisional Populations: Analytical Solution with Size-Dependent Strength , 2003, 1407.3307.

[85]  Robert Jedicke,et al.  The fossilized size distribution of the main asteroid belt , 2003 .

[86]  J. Chambers,et al.  Mercury - A New Software Package for Orbital Integrations , 1997 .

[87]  Richard P. Binzel,et al.  Bias-corrected population, size distribution, and impact hazard for the near-Earth objects , 2004 .

[88]  Harold F. Levison,et al.  The recent breakup of an asteroid in the main-belt region , 2002, Nature.

[89]  W. Hartmann Lunar “cataclysm”: A misconception? , 1975 .

[90]  S. Slivan,et al.  Spin vector alignment of Koronis family asteroids , 2002, Nature.

[91]  Elizabeth A. Lada,et al.  Disk Frequencies and Lifetimes in Young Clusters , 2001, astro-ph/0104347.

[92]  William K. Hartmann,et al.  The Time-Dependent Intense Bombardment of the Primordial Earth/Moon System , 2000 .

[93]  H. McSween,et al.  Heliocentric Zoning of the Asteroid Belt by Aluminum-26 Heating , 1993, Science.

[94]  E. Scott Meteorite Evidence for the Accretion and Collisional Evolution of Asteroids , 2002 .

[95]  Timothy J. McCoy,et al.  Non-chondritic meteorites from asteroidal bodies , 1998 .

[96]  K. Keil,et al.  A petrologic study of the IAB iron meteorites: Constraints on the formation of the IAB‐Winonaite parent body , 2000 .

[97]  E. Shoemaker,et al.  Proterozoic Impact Record of Australia , 1990 .

[98]  M. Grady Meteorites: Flux With Time and Impact Effects , 1998 .

[99]  J. Williams,et al.  Origin of differentiated meteorites , 1979 .

[100]  H. Haack,et al.  Catastrophic fragmentation of asteroids: evidence from meteorites , 1994 .

[101]  D. Bogard Impact ages of meteorites: A synthesis , 1995 .

[102]  R. Jedicke,et al.  The Orbital and Absolute Magnitude Distributions of Main Belt Asteroids , 1998 .

[103]  E. M. Shoemaker,et al.  Preliminary analysis of the fine structure of the lunar surface , 1965 .

[104]  S. Weidenschilling The distribution of mass in the planetary system and solar nebula , 1977 .

[105]  R. Canup Dynamics of Lunar Formation , 2004 .

[106]  W. Hartmann,et al.  The Comparison of Size-Frequency Distributions of Impact Craters and Asteroids and the Planetary Cratering Rate , 2002 .

[107]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[108]  S. Mojzsis,et al.  Heavy Bombardment on the Earth at ~3.85 Ga: The Search for Petrographic and Geochemical Evidence , 2000 .

[109]  A. Morbidellia,et al.  The Yarkovsky-driven origin of near-Earth asteroids , 2003 .

[110]  G. W. Wetherill,et al.  Collisions in the asteroid belt , 1967 .

[111]  P. Farinella,et al.  Origin, Aging, and Death of Asteroid Families , 1999 .

[112]  S. Inaba,et al.  Formation of gas giant planets: core accretion models with fragmentation and planetary envelope , 2003 .

[113]  G. Meeker,et al.  The 4.56 Ga UPb age of the MET 780058 ureilite , 1995 .

[114]  Vokrouhlick,et al.  Semimajor axis mobility of asteroidal fragments , 1999, Science.

[115]  Alessandro Morbidelli,et al.  Orbital and temporal distributions of meteorites originating in the asteroid belt , 1998 .

[116]  R. Jedicke,et al.  Debiased Orbital and Absolute Magnitude Distribution of the Near-Earth Objects , 2002 .

[117]  B. Gladman,et al.  A plausible cause of the late heavy bombardment , 2001 .

[118]  Alfred S. McEwen,et al.  Optical maturity of ejecta from large rayed lunar craters , 2001 .

[119]  P. Cassen,et al.  The effects of nebula surface density profile and giant‐planet eccentricities on planetary accretion in the inner solar system , 2002 .

[120]  Jack J. Lissauer,et al.  Timescales for planetary accretion and the structure of the protoplanetary disk , 1986 .

[121]  H. Haack,et al.  Formation of mesosiderites by fragmentation and reaccretion of a large differentiated asteroid , 2001 .

[122]  H. Levison,et al.  Remarks on Modeling the Formation of Uranus and Neptune , 2001 .

[123]  M. S. Matthews,et al.  Hazards Due to Comets and Asteroids , 1992 .

[124]  Erik Asphaug,et al.  Accretion Efficiency during Planetary Collisions , 2004 .

[125]  Francesco Marzari,et al.  The Missing Psyche Family: Collisionally Eroded or Never Formed? , 1999 .

[126]  W. Ward Solar nebula dispersal and the stability of the planetary system: I. Scanning secular resonance theory , 1981 .

[127]  Alberto Cellino,et al.  Physical and Dynamical Properties of Asteroid Families , 2002 .

[128]  Giovanni B. Valsecchi,et al.  Source regions and timescales for the delivery of water to the Earth , 2000 .

[129]  D. Davis,et al.  Accretional Evolution of a Planetesimal Swarm , 1997 .

[130]  Klaus Keil,et al.  Geological History of Asteroid 4 Vesta: The "Smallest Terrestrial Planet" , 2002 .

[131]  Viktor S. Safronov,et al.  The origin of the asteroid belt , 1991 .

[132]  J. Carvano,et al.  Distribution of taxonomic classes in the main belt of asteroids ? ? Based on observations made with , 2003 .

[133]  Edward F. Tedesco,et al.  The Infrared Space Observatory Deep Asteroid Search , 2002 .

[134]  K. Keil,et al.  Meteoritic parent bodies: Their number and identification , 2002 .

[135]  D. Williams,et al.  Size Distribution of Collisionally Evolved Asteroidal Populations: Analytical Solution for Self-Similar Collision Cascades , 1994 .

[136]  Giovanni B. Valsecchi,et al.  Asteroids falling into the Sun , 1994, Nature.

[137]  Jedicke,et al.  Understanding the distribution of near-earth asteroids , 1999, Science.

[138]  D. A. Papanastassiou,et al.  Isotopic evidence for a terminal lunar cataclysm , 1974 .

[139]  Joseph A. Burns,et al.  Dynamical Evolution of Main Belt Meteoroids: Numerical Simulations Incorporating Planetary Perturbations and Yarkovsky Thermal Forces , 2000 .

[140]  Main Belt Asteroid Collision Probabilities and Impact Velocities , 1998 .

[141]  S. Dermott,et al.  Asteroidal Dust , 2002 .

[142]  M. Nolan,et al.  Velocity Distributions among Colliding Asteroids , 1994 .

[143]  G. Wetherill,et al.  Terrestrial planet and asteroid formation in the presence of giant planets. I. Relative velocities of planetesimals subject to Jupiter and Saturn perturbations. , 2000, Icarus.

[144]  S. Ida,et al.  Excitation of Orbital Inclinations of Asteroids during Depletion of a Protoplanetary Disk: Dependence on the Disk Configuration , 2002 .

[145]  C. Goodrich Ureilites - A critical review , 1992 .

[146]  Andrea Milani,et al.  The Determination of Asteroid Proper Elements , 2002 .

[147]  Richard P. Binzel,et al.  Small main-belt asteroid spectroscopic survey: Initial results , 1995 .

[148]  H. McSween,et al.  Thermal Evolution Models of Asteroids , 2002 .

[149]  H. Haack,et al.  Iron and Stony-Iron Meteorites , 2005 .

[150]  P. Farinella,et al.  Collision rates and impact velocities in the Main Asteroid Belt , 1992 .

[151]  R. Gil-Hutton,et al.  Collisional evolution of small body populations , 2002 .

[152]  Harold F. Levison,et al.  The formation of Uranus and Neptune in the Jupiter–Saturn region of the Solar System , 1999, Nature.

[153]  S. P. Worden,et al.  The flux of small near-Earth objects colliding with the Earth , 2002, Nature.

[154]  D. Rabinowitz,et al.  A reduced estimate of the number of kilometre-sized near-Earth asteroids , 2000, Nature.

[155]  Richard P. Binzel,et al.  Phase II of the Small Main-Belt Asteroid Spectroscopic Survey: The Observations , 2002 .

[156]  E. Kokubo,et al.  Formation of Protoplanet Systems and Diversity of Planetary Systems , 2002 .

[157]  K. Keil,et al.  FORMATION AND EVOLUTION OF THE UREILITE PARENT BODY AND ITS OFFSPRING. , 2002 .

[158]  Harold F. Levison,et al.  Dynamical Lifetimes of Objects Injected into Asteroid Belt Resonances , 1997 .

[159]  J. S. Stuart,et al.  A Near-Earth Asteroid Population Estimate from the LINEAR Survey , 2001, Science.

[160]  G. Neukum,et al.  Crater Size Distributions and Impact Probabilities on Earth from Lunar, Terrestrial Planeta, and Asteroid Cratering Data , 1994 .

[161]  W. Hartmann,et al.  Meteorite Delivery via Yarkovsky Orbital Drift , 1998 .

[162]  Jack J. Lissauer,et al.  Formation of the Giant Planets by Concurrent Accretion of Solids and Gas , 1995 .

[163]  K. Keil Enstatite meteorites and their parent bodies , 1989 .

[164]  Randolph L. Kirk,et al.  The rayed crater Zunil and interpretations of small impact craters on Mars , 2005 .

[165]  W. Bottke,et al.  Detection of the Yarkovsky effect for main-belt asteroids , 2004 .

[166]  Robert A Kolvoord,et al.  Collision lifetimes and impact statistics of near-Earth asteroids , 1993 .

[167]  J. Head,et al.  Collisional and Dynamical History of Ida , 1996 .

[168]  Stephanie C. Werner,et al.  The Near-Earth Asteroid Size–Frequency Distribution: A Snapshot of the Lunar Impactor Size–Frequency Distribution , 2002 .

[169]  Paolo Tanga,et al.  On the Size Distribution of Asteroid Families: The Role of Geometry , 1999 .

[170]  J. Chambers,et al.  The Primordial Excitation and Clearing of the Asteroid Belt , 2001 .

[171]  Harold F. Levison,et al.  THE FORMATION OF URANUS AND NEPTUNE AMONG JUPITER AND SATURN , 2001, astro-ph/0111290.

[172]  C. Chapman Cratering on Asteroids from Galileo and NEAR Shoemaker , 2002 .

[173]  David Vokrouhlický,et al.  The vector alignments of asteroid spins by thermal torques , 2003, Nature.