MaxDIA enables library-based and library-free data-independent acquisition proteomics

[1]  M. Selbach,et al.  mRNAs, proteins and the emerging principles of gene expression control , 2020, Nature Reviews Genetics.

[2]  B. MacLean,et al.  Selection of Features with Consistent Profiles Improves Relative Protein Quantification in Mass Spectrometry Experiments. , 2020, Molecular & cellular proteomics : MCP.

[3]  Kristian E. Swearingen,et al.  Generating high quality libraries for DIA MS with empirically corrected peptide predictions , 2020, Nature Communications.

[4]  Jürgen Cox,et al.  MaxQuant Software for Ion Mobility Enhanced Shotgun Proteomics* , 2020, Molecular & Cellular Proteomics.

[5]  Ronghui Lou,et al.  Hybrid Spectral Library Combining DIA-MS Data and a Targeted Virtual Library Substantially Deepens the Proteome Coverage , 2020, iScience.

[6]  Pengyuan Yang,et al.  In silico spectral libraries by deep learning facilitate data-independent acquisition proteomics , 2020, Nature Communications.

[7]  Brendan MacLean,et al.  Avant-garde: An automated data-driven DIA data curation tool. , 2019, Nature Methods.

[8]  Christoph B. Messner,et al.  DIA-NN: Neural networks and interference correction enable deep proteome coverage in high throughput , 2019, Nature Methods.

[9]  Oliver M. Bernhardt,et al.  Rapid and site-specific deep phosphoproteome profiling by data-independent acquisition without the need for spectral libraries , 2019, bioRxiv.

[10]  Roman Fischer,et al.  MaxQuant Software for Ion Mobility Enhanced Shotgun Proteomics* , 2019, Molecular & Cellular Proteomics.

[11]  B. Kuster,et al.  Prosit: proteome-wide prediction of peptide tandem mass spectra by deep learning , 2019, Nature Methods.

[12]  J. Cox,et al.  High-quality MS/MS spectrum prediction for data-dependent and data-independent acquisition data analysis , 2019, Nature Methods.

[13]  Oliver M. Bernhardt,et al.  Data-independent Acquisition Improves Quantitative Cross-linking Mass Spectrometry. , 2019, Molecular & cellular proteomics : MCP.

[14]  Martin Eisenacher,et al.  The PRIDE database and related tools and resources in 2019: improving support for quantification data , 2018, Nucleic Acids Res..

[15]  Ngoc Hieu Tran,et al.  Deep learning enables de novo peptide sequencing from data-independent-acquisition mass spectrometry , 2018, Nature Methods.

[16]  Michael J MacCoss,et al.  Chromatogram libraries improve peptide detection and quantification by data independent acquisition mass spectrometry , 2018, Nature Communications.

[17]  Melvin A. Park,et al.  Online Parallel Accumulation–Serial Fragmentation (PASEF) with a Novel Trapped Ion Mobility Mass Spectrometer* , 2018, Molecular & Cellular Proteomics.

[18]  Ludovic C. Gillet,et al.  Data‐independent acquisition‐based SWATH‐MS for quantitative proteomics: a tutorial , 2018, Molecular systems biology.

[19]  Jürgen Cox,et al.  Computational Methods for Understanding Mass Spectrometry–Based Shotgun Proteomics Data , 2018, Annual Review of Biomedical Data Science.

[20]  Ronald J. Moore,et al.  Reproducible workflow for multiplexed deep-scale proteome and phosphoproteome analysis of tumor tissues by liquid chromatography–mass spectrometry , 2018, Nature Protocols.

[21]  J. Cox,et al.  MaxQuant goes Linux , 2018, Nature Methods.

[22]  Philipp E. Geyer,et al.  BoxCar acquisition method enables single-shot proteomics at a depth of 10,000 proteins in 100 minutes , 2018, Nature Methods.

[23]  R. Parker,et al.  An improved MS2 system for accurate reporting of the mRNA life cycle , 2017, Nature Methods.

[24]  Oliver M. Bernhardt,et al.  Optimization of Experimental Parameters in Data-Independent Mass Spectrometry Significantly Increases Depth and Reproducibility of Results* , 2017, Molecular & Cellular Proteomics.

[25]  Michael J MacCoss,et al.  Statistical control of peptide and protein error rates in large-scale targeted DIA analyses , 2017, Nature Methods.

[26]  Devin P. Sullivan,et al.  A subcellular map of the human proteome , 2017, Science.

[27]  Cathy H. Wu,et al.  UniProt: the universal protein knowledgebase , 2016, Nucleic Acids Research.

[28]  Yasset Perez-Riverol,et al.  A multi-center study benchmarks software tools for label-free proteome quantification , 2016, Nature Biotechnology.

[29]  Marco Y. Hein,et al.  The Perseus computational platform for comprehensive analysis of (prote)omics data , 2016, Nature Methods.

[30]  Stefan Tenzer,et al.  Label-free quantification in ion mobility–enhanced data-independent acquisition proteomics , 2016, Nature Protocols.

[31]  Tianqi Chen,et al.  XGBoost: A Scalable Tree Boosting System , 2016, KDD.

[32]  Laura DeFrancesco,et al.  20 years of Nature Biotechnology research tools , 2016, Nature Biotechnology.

[33]  Hyungwon Choi,et al.  mapDIA: Preprocessing and statistical analysis of quantitative proteomics data from data independent acquisition mass spectrometry. , 2015, Journal of proteomics.

[34]  Oliver M. Bernhardt,et al.  Extending the Limits of Quantitative Proteome Profiling with Data-Independent Acquisition and Application to Acetaminophen-Treated Three-Dimensional Liver Microtissues* , 2015, Molecular & Cellular Proteomics.

[35]  Chih-Chiang Tsou,et al.  DIA-Umpire: comprehensive computational framework for data-independent acquisition proteomics , 2015, Nature Methods.

[36]  Carlos Guestrin,et al.  XGBoost : Reliable Large-scale Tree Boosting System , 2015 .

[37]  Jun Fan,et al.  The mzTab Data Exchange Format: Communicating Mass-spectrometry-based Proteomics and Metabolomics Experimental Results to a Wider Audience* , 2014, Molecular & Cellular Proteomics.

[38]  Marco Y. Hein,et al.  Accurate Proteome-wide Label-free Quantification by Delayed Normalization and Maximal Peptide Ratio Extraction, Termed MaxLFQ * , 2014, Molecular & Cellular Proteomics.

[39]  Melvin A. Park,et al.  High resolution trapped ion mobility spectrometery of peptides. , 2014, Analytical chemistry.

[40]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[41]  Ben C. Collins,et al.  A tool for the automated, targeted analysis of data-independent acquisition MS-data: OpenSWATH , 2014 .

[42]  J. Yates,et al.  Digestion and depletion of abundant proteins improves proteomic coverage , 2012, Nature Methods.

[43]  J. Yates,et al.  Digestion and depletion of abundant proteins improves proteomic coverage , 2013, Nature Methods.

[44]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[45]  Nadav S. Bar,et al.  Landscape of transcription in human cells , 2012, Nature.

[46]  Melvin A. Park,et al.  Gas-phase separation using a trapped ion mobility spectrometer , 2011, International journal for ion mobility spectrometry : official publication of the International Society for Ion Mobility Spectrometry.

[47]  S. Teichmann,et al.  RNA sequencing reveals two major classes of gene expression levels in metazoan cells , 2011, Molecular systems biology.

[48]  M. Mann,et al.  Software Lock Mass by Two-Dimensional Minimization of Peptide Mass Errors , 2011, Journal of the American Society for Mass Spectrometry.

[49]  T. Tatusova,et al.  Entrez Gene: gene-centered information at NCBI , 2010, Nucleic Acids Res..

[50]  Lennart Martens,et al.  mzML—a Community Standard for Mass Spectrometry Data* , 2010, Molecular & Cellular Proteomics.

[51]  Brendan MacLean,et al.  Skyline: an open source document editor for creating and analyzing targeted proteomics experiments , 2010, Bioinform..

[52]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[53]  M. Mann,et al.  Universal sample preparation method for proteome analysis , 2009, Nature Methods.

[54]  J. Schmidhuber,et al.  A Novel Connectionist System for Unconstrained Handwriting Recognition , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[55]  C. Eyers Universal sample preparation method for proteome analysis , 2009 .

[56]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[57]  N. Rajewsky,et al.  Widespread changes in protein synthesis induced by microRNAs , 2008, Nature.

[58]  B. Williams,et al.  Mapping and quantifying mammalian transcriptomes by RNA-Seq , 2008, Nature Methods.

[59]  William Stafford Noble,et al.  Semi-supervised learning for peptide identification from shotgun proteomics datasets , 2007, Nature Methods.

[60]  Steven P Gygi,et al.  Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry , 2007, Nature Methods.

[61]  Tatiana A. Tatusova,et al.  Entrez Gene: gene-centered information at NCBI , 2004, Nucleic Acids Res..

[62]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[63]  M. Mann,et al.  Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. , 2003, Analytical chemistry.