A Spectral Approach to Uncertainty Quantification in Water Distribution Networks

AbstractTo date, the hydraulics of water distribution networks are calculated using deterministic models. Because many of the parameters in these models are not known exactly, it is important to ev...

[1]  E. J. M. Blokker,et al.  Simulation of water demands provides insight , 2006 .

[2]  Jakobus E. van Zyl,et al.  DUAL CALIBRATION FOR COUPLED FLOW AND TRANSPORT MODELS OF WATER DISTRIBUTION SYSTEMS , 2011 .

[4]  Kevin E Lansey,et al.  Optimal meter placement for pipe burst detection in water distribution systems , 2016 .

[5]  Saman Razavi,et al.  What do we mean by sensitivity analysis? The need for comprehensive characterization of “global” sensitivity in Earth and Environmental systems models , 2015 .

[6]  Dragan Savic,et al.  Genetic Algorithms for Least-Cost Design of Water Distribution Networks , 1997 .

[7]  D. V. Chase,et al.  Advanced Water Distribution Modeling and Management , 2003 .

[8]  Ezio Todini,et al.  Extending the global gradient algorithm to unsteady flow extended period simulations of water distribution systems , 2011 .

[9]  Bruno Sudret,et al.  Adaptive sparse polynomial chaos expansion based on least angle regression , 2011, J. Comput. Phys..

[10]  Filippo Pecci,et al.  Quadratic head loss approximations for optimisation problems in water supply networks , 2017 .

[11]  Olivier Piller,et al.  24-Hours Demand Forecasting Based on SARIMA and Support Vector Machines , 2014 .

[12]  Steven G. Buchberger,et al.  Intensity, Duration, and Frequency of Residential Water Demands , 1996 .

[13]  Ronald L. Wasserstein,et al.  Monte Carlo: Concepts, Algorithms, and Applications , 1997 .

[14]  Ralph C. Smith,et al.  Uncertainty Quantification: Theory, Implementation, and Applications , 2013 .

[15]  D. Xiu Numerical Methods for Stochastic Computations: A Spectral Method Approach , 2010 .

[16]  James G. Uber,et al.  Sampling Design Methods for Water Distribution Model Calibration , 1998 .

[17]  Kevin E Lansey,et al.  Uncertainty in Water Distribution Network Modeling , 1996 .

[18]  W. Beyer CRC Standard Mathematical Tables and Formulae , 1991 .

[19]  William H. Press,et al.  Numerical recipes in C , 2002 .

[20]  J. V. Zyl,et al.  Modeling Elastically Deforming Leaks in Water Distribution Pipes , 2014 .

[21]  W. Hart,et al.  Review of Sensor Placement Strategies for Contamination Warning Systems in Drinking Water Distribution Systems , 2010 .

[22]  Stefano Marelli,et al.  UQLab: a framework for uncertainty quantification in MATLAB , 2014 .

[23]  A. Ostfeld,et al.  Robust optimization for water distribution systems least cost design , 2013 .

[24]  Avi Ostfeld,et al.  Optimal Layout of Early Warning Detection Stations for Water Distribution Systems Security , 2004 .

[25]  P. Boulos,et al.  Discrete Volume‐Element Method for Network Water‐Quality Models , 1993 .

[26]  O. L. Maître,et al.  Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics , 2010 .

[27]  J. E. van Zyl,et al.  The potential of graphical processing units to solve hydraulic network equations , 2012 .

[28]  Jochen Deuerlein,et al.  Limitations of demand- and pressure-driven modeling for large deficient networks , 2017 .

[29]  Zoran Kapelan,et al.  Quo vadis water distribution model calibration? , 2009 .

[30]  Jochen Deuerlein,et al.  A graph decomposition‐based approach for water distribution network optimization , 2013 .

[31]  C. T. Haan,et al.  Calibration assessment and data collection for water distribution networks , 2001 .

[32]  Michael S. Eldred,et al.  DAKOTA, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Sensitivity Analysis, and Uncertainty Quantification , 1996 .

[33]  Zoran Kapelan,et al.  Calibration of Water Distribution Hydraulic Models Using a Bayesian-Type Procedure , 2007 .

[34]  Avi Ostfeld,et al.  Using aggregation/skeletonization network models for water quality simulations in epidemiologic studies , 2008 .

[35]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[36]  Joaquín Izquierdo,et al.  Predictive models for forecasting hourly urban water demand , 2010 .

[37]  Velimir V. Vesselinov,et al.  Analytical sensitivity analysis of transient groundwater flow in a bounded model domain using the adjoint method , 2015 .

[38]  Ionel Michael Navon,et al.  Sensitivity and Uncertainty Analysis, Volume II: Applications to Large-Scale Systems , 2005 .

[39]  Jochen Deuerlein,et al.  Local sensitivity of pressure-driven modeling and demand-driven modeling steady-state solutions to variations in parameters. , 2017 .

[40]  Avi Ostfeld,et al.  Design of Optimal Reliable Multiquality Water-Supply Systems , 1996 .

[41]  N. Cutland,et al.  On homogeneous chaos , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.