Astronomical Observations of Volatiles on Asteroids

We have long known that water and hydroxyl are important components in meteorites and asteroids. However, in the time since the publication of Asteroids III, evolution of astronomical instrumentation, laboratory capabilities, and theoretical models have led to great advances in our understanding of H2O/OH on small bodies, and spacecraft observations of the Moon and Vesta have important implications for our interpretations of the asteroidal population. We begin this chapter with the importance of water/OH in asteroids, after which we will discuss their spectral features throughout the visible and near-infrared. We continue with an overview of the findings in meteorites and asteroids, closing with a discussion of future opportunities, the results from which we can anticipate finding in Asteroids V. Because this topic is of broad importance to asteroids, we also point to relevant in-depth discussions elsewhere in this volume.

[1]  Jean-Pierre Bibring,et al.  Hydration state of the Martian surface as seen by Mars Express OMEGA: 2. H2O content of the surface , 2007 .

[2]  Alessandro Morbidelli,et al.  Iron meteorites as remnants of planetesimals formed in the terrestrial planet region , 2006, Nature.

[3]  R. Phillips,et al.  SHARAD: The MRO 2005 shallow radar , 2004 .

[4]  M. Zolensky,et al.  Mineralogy and composition of matrix and chondrule rims in carbonaceous chondrites , 1993 .

[5]  Julie Ziffer,et al.  Water ice and organics on the surface of the asteroid 24 Themis , 2010, Nature.

[6]  F. DeMeo,et al.  Visible spectroscopy of the new ESO large programme on trans-Neptunian objects and Centaurs: final results , 2009, 0910.0450.

[7]  Martin A. Slade,et al.  Radar imagery of Mercury’s putative polar ice: 1999–2005 Arecibo results , 2011 .

[8]  J. Licandro,et al.  The nature of comet-asteroid transition object (3200) Phaethon , 2007 .

[9]  J. Carvano,et al.  Search for relations among a sample of 460 asteroids with featureless spectra , 2003 .

[10]  R. Wiens,et al.  Evidence for water ice near the lunar poles , 2001 .

[11]  D. Trilling,et al.  THE DISCOVERY OF COMETARY ACTIVITY IN NEAR-EARTH ASTEROID (3552) DON QUIXOTE , 2013, The Astrophysical Journal.

[12]  Martin R. Lee The Petrography, Mineralogy and Origins of Calcium Sulphate within the Cold Bokkeveld CM Carbonaceous Chondrite , 1993 .

[13]  R. Duffard,et al.  S3OS2: the visible spectroscopic survey of 820 asteroids , 2004 .

[14]  A. Rivkin,et al.  Rotationally-resolved spectroscopy of Vesta I: 2–4 μm region , 2006 .

[15]  Roger N. Clark,et al.  Spectral properties of mixtures of montmorillonite and dark carbon grains: Implications for remote sensing minerals containing chemically and physically adsorbed water , 1983 .

[16]  C. Russell,et al.  Pitted Terrain on Vesta and Implications for the Presence of Volatiles , 2012, Science.

[17]  F. Vilas Is the U-B Color Sufficient for Identifying Water of Hydration on Solar System Bodies? , 1995 .

[18]  Robert H. Brown,et al.  Constraints on the surface composition of Trojan asteroids from near-infrared (0.8–4.0 μm) spectroscopy , 2003 .

[19]  D. J. Tholen,et al.  The Eight-Color Asteroid Survey: Results for 589 Minor Planets , 1985 .

[20]  David C. Slater,et al.  ALICE: The Ultraviolet Imaging Spectrograph Aboard the New Horizons Pluto–Kuiper Belt Mission , 2008 .

[21]  Michael E. Zolensky,et al.  Mineralogy of Tagish Lake: An ungrouped type 2 carbonaceous chondrite , 2002 .

[22]  W. Bottke,et al.  Towards initial mass functions for asteroids and Kuiper Belt Objects , 2010, 1004.0270.

[23]  B. Schmitt,et al.  Goethite as an alternative origin of the 3.1 μm band on dark asteroids , 2011 .

[24]  M. D. Dyar,et al.  Mechanisms for incorporation of hydrogen in and on terrestrial planetary surfaces , 2010 .

[25]  C. Pieters,et al.  Low-temperature and low atmospheric pressure infrared reflectance spectroscopy of Mars soil analog materials , 1995 .

[26]  Jing Li,et al.  THE DUST TAIL OF ASTEROID (3200) PHAETHON , 2013, 1306.3741.

[27]  R. Clark,et al.  Planetary reflectance measurements in the region of planetary thermal emission , 1979 .

[28]  F. De Luise,et al.  Visible spectroscopic and photometric survey of Jupiter Trojans: Final results on dynamical families , 2007, 0704.0350.

[29]  T. Owen,et al.  Constraints on the Composition of Trojan Asteroid 624 Hektor , 2013 .

[30]  S. Weidenschilling Initial sizes of planetesimals and accretion of the asteroids , 2011 .

[31]  Richard P. Binzel,et al.  The OSIRIS‐REx target asteroid (101955) Bennu: Constraints on its physical, geological, and dynamical nature from astronomical observations , 2015 .

[32]  M. Shepard,et al.  Asteroid 21 Lutetia at 3 μm: Observations with IRTF SpeX , 2011 .

[33]  Larry A. Lebofsky,et al.  The composition and origin of the C, P, and D asteroids: Water as a tracer of thermal evolution in the outer belt , 1990 .

[34]  M. Gounelle The Asteroid–Comet Continuum: In Search of Lost Primitivity , 2011 .

[35]  A. Bini,et al.  The VIR Spectrometer , 2011 .

[36]  S. Sandford,et al.  OPTICAL CONSTANTS OF AMORPHOUS AND CRYSTALLINE H2O-ICE: 2.5–22 μm (4000–455 cm−1) OPTICAL CONSTANTS OF H2O-ICE , 2009 .

[37]  Paul Mann,et al.  Spectral reflectance properties of carbonaceous chondrites: 1. CI chondrites , 2012 .

[38]  J. Licandro,et al.  Near-infrared spectroscopic survey of B-type asteroids: Compositional analysis , 2011 .

[39]  M J Gaffey,et al.  Phyllosilicate Absorption Features in Main-Belt and Outer-Belt Asteroid Reflectance Spectra , 1989, Science.

[40]  K. Stapelfeldt,et al.  ASTEROID BELTS IN DEBRIS DISK TWINS: VEGA AND FOMALHAUT , 2013, 1301.1331.

[41]  Harold F. Levison,et al.  Contamination of the asteroid belt by primordial trans-Neptunian objects , 2009, Nature.

[42]  K. Tsiganis,et al.  Origin of the orbital architecture of the giant planets of the Solar System , 2005, Nature.

[43]  F. Moreno,et al.  (596) SCHEILA IN OUTBURST: A PROBABLE COLLISION EVENT IN THE MAIN ASTEROID BELT , 2011 .

[44]  Andrew S. Rivkin,et al.  Detection of ice and organics on an asteroidal surface , 2010, Nature.

[45]  Jesse D. Bregman,et al.  Spectral Irradiance Calibration in the Infrared , 2011 .

[46]  C. Russell,et al.  Dark material on Vesta from the infall of carbonaceous volatile-rich material , 2012, Nature.

[47]  Olivier Forni,et al.  Elemental Mapping by Dawn Reveals Exogenic H in Vesta’s Regolith , 2012, Science.

[48]  J. Castillo‐Rogez,et al.  Geophysical evolution of the Themis family parent body , 2010 .

[49]  N. Schorghofer The Lifetime of Ice on Main Belt Asteroids , 2008 .

[50]  A. Rhoden,et al.  THE 3 μm SPECTRUM OF JUPITER's IRREGULAR SATELLITE HIMALIA , 2014, 1409.1261.

[51]  T. Jones An infrared reflectance study of water in outer belt asteroids: Clues to composition and origin. , 1988 .

[52]  Alan W. Harris,et al.  Asteroids in the Thermal Infrared , 2002 .

[53]  R. Clark,et al.  High spectral resolution reflectance spectroscopy of minerals , 1990 .

[54]  A. Rivkin,et al.  Toward a taxonomy of asteroid spectra in the 3-µm region , 2012 .

[55]  D. Jewitt,et al.  EPISODIC EJECTION FROM ACTIVE ASTEROID 311P/PANSTARRS , 2014, The Astrophysical Journal.

[56]  C. Russell,et al.  Delivery of dark material to Vesta via carbonaceous chondritic impacts , 2012, 1208.2833.

[57]  M. Zolensky,et al.  Absorption bands near three micrometers in diffuse reflectance spectra of carbonaceous chondrites: Comparison with asteroids , 1997 .

[58]  Y. I. Ryskin The Vibrations of Protons in Minerals: hydroxyl, water and ammonium , 1974 .

[59]  Richard P. Binzel,et al.  Observed spectral properties of near-Earth objects: results for population distribution, source regions, and space weathering processes , 2004 .

[60]  M. Gaffey,et al.  Spectral reflectance properties of carbonaceous chondrites 4: Aqueously altered and thermally metamorphosed meteorites , 2012 .

[61]  Julie Ziffer,et al.  Spectroscopy of B-type Asteroids: Subgroups and meteorite analogs , 2010 .

[62]  H. Boehnhardt,et al.  ESO Large Program on physical studies of Trans-Neptunian objects and Centaurs: Final results of the visible spectrophotometric observations , 2004 .

[63]  Harold F. Levison,et al.  An Archaean heavy bombardment from a destabilized extension of the asteroid belt , 2012, Nature.

[64]  Alan E. Rubin,et al.  Progressive aqueous alteration of CM carbonaceous chondrites , 2007 .

[65]  Richard P. Binzel,et al.  An extension of the Bus asteroid taxonomy into the near-infrared , 2009 .

[66]  G. Consolmagno,et al.  The nature of Low-Albedo asteroids from 3-μm multi-color photometry , 1989 .

[67]  A. Rivkin The fraction of hydrated C-complex asteroids in the asteroid belt from SDSS data , 2012 .

[68]  K. Keil,et al.  Meteoritic parent bodies: Their number and identification , 2002 .

[69]  Andrew Scott Rivkin,et al.  Asteroid 65 Cybele: Detection Of Small Silicate Grains, Water-Ice And Organics , 2010 .

[70]  G. Hunt SPECTRAL SIGNATURES OF PARTICULATE MINERALS IN THE VISIBLE AND NEAR INFRARED , 1977 .

[71]  D. Vokrouhlický,et al.  Origin of the Near-Ecliptic Circumsolar Dust Band , 2008 .

[72]  J. Thomas-Osip,et al.  Aqueous alteration affecting the irregular outer planets satellites : Evidence from spectral reflectance , 2006 .

[73]  M. D. Dyar,et al.  Character and Spatial Distribution of OH/H2O on the Surface of the Moon Seen by M3 on Chandrayaan-1 , 2009, Science.

[74]  S. Sawyer A High Resolution CCD Spectroscopic Survey of Low Albedo Main Belt Asteroids - Results and Analysis , 1991 .

[75]  D. Teyssier,et al.  Localized sources of water vapour on the dwarf planet (1) Ceres , 2014, Nature.

[76]  A. Rivkin,et al.  Rotationally-resolved spectra of Ceres in the 3-μm region , 2010 .

[77]  Andrew Scott Rivkin,et al.  Hydrated Minerals on Asteroids: The Astronomical Record , 2003 .

[78]  R. H. Brown,et al.  Evidence for Ammonium-Bearing Minerals on Ceres , 1991, Science.

[79]  Scott L. Murchie,et al.  Spectral Properties and Heterogeneity of PHOBOS from Measurements by PHOBOS 2 , 1996 .

[80]  Barucci,et al.  Near infra-red spectroscopy of the asteroid 21 Lutetia - I. New results of long-term campaign , 2006 .

[81]  F. Marzari,et al.  The surface composition of Jupiter Trojans: Visible and near-infrared survey of dynamical families ☆ , 2006 .

[82]  Richard V. Morris,et al.  The optical properties of the finest fraction of lunar soil: Implications for space weathering , 2001 .

[83]  M. Zolensky,et al.  Thermal metamorphism of the C, G, B, and F asteroids seen from the 0.7 μm, 3 μm, and UV absorption strengths in comparison with carbonaceous chondrites , 1996 .

[84]  J. Emery,et al.  Composition and Surface Properties of Transneptunian Objects and Centaurs , 2008 .

[85]  Larry Denneau,et al.  DISCOVERY OF MAIN-BELT COMET P/2006 VW139 BY Pan-STARRS1 , 2012, 1202.2126.

[86]  Robert H. Brown,et al.  Near-infrared spectroscopy of Himalia , 2004 .

[87]  Richard P. Binzel,et al.  Phase II of the Small Main-Belt Asteroid Spectroscopic Survey: A Feature-Based Taxonomy , 2002 .

[88]  Harry Y. McSween,et al.  Nature and degree of aqueous alteration in CM and CI carbonaceous chondrites , 2013 .

[89]  D. Trilling,et al.  Near-Infrared Spectrophotometry of Phobos and Deimos , 2002 .

[90]  Astrobiology: A Multi-Disciplinary Approach , 2004 .

[91]  M. Shepard,et al.  A radar survey of M- and X-class asteroids. III. Insights into their composition, hydration state, & structure , 2015 .

[92]  H. Boehnhardt,et al.  Testing the comet nature of main belt comets. The spectra of 133P/Elst-Pizarro and 176P/LINEAR , 2011, 1104.0879.

[93]  Lori M. Feaga,et al.  Temporal and Spatial Variability of Lunar Hydration As Observed by the Deep Impact Spacecraft , 2009, Science.

[94]  Aqueous alteration on main belt primitive asteroids: Results from visible spectroscopy☆ , 2014, 1402.0175.

[95]  O. Witasse,et al.  Paucity of Tagish Lake-like parent bodies in the Asteroid Belt and among Jupiter Trojans , 2013 .

[96]  N. Thomas,et al.  Overview of Lutetia's surface composition , 2012 .

[97]  Roger,et al.  Spectroscopy of Rocks and Minerals , and Principles of Spectroscopy , 2002 .

[98]  S. Marchi,et al.  Heating of near-Earth objects and meteoroids due to close approaches to the Sun , 2009, 0907.5062.

[99]  David Jewitt,et al.  THE STRANGE CASE OF 133P/ELST-PIZARRO: A COMET AMONG THE ASTEROIDS , 2004 .

[100]  R. H. Brown,et al.  Hydrogen concentrations on C‐class asteroids derived from remote sensing , 2003 .

[101]  David Jewitt,et al.  A Population of Comets in the Main Asteroid Belt , 2006, Science.

[102]  K. Meech,et al.  MAIN-BELT COMET 238P/READ REVISITED , 2011, 1106.0045.

[103]  L. Starukhina,et al.  Water detection on atmosphereless celestial bodies: Alternative explanations of the observations , 2001 .

[104]  M. Belton,et al.  The temperature, thermal inertia, roughness and color of the nuclei of Comets 103P/Hartley 2 and 9P/Tempel 1 , 2013 .

[105]  K. Tsiganis,et al.  Chaotic capture of Jupiter's Trojan asteroids in the early Solar System , 2005, Nature.

[106]  I. Bertini Main Belt Comets: A new class of small bodies in the solar system , 2011 .

[107]  Richard P. Binzel,et al.  Phase II of the Small Main-Belt Asteroid Spectroscopic Survey: The Observations , 2002 .

[108]  Andrew Scott Rivkin,et al.  The Nature of M-Class Asteroids from 3-μm Observations☆ , 2000 .

[109]  L. Lebofsky,et al.  Radiometry and a thermal modeling of asteroids , 1989 .

[110]  N. Pinilla-Alonso,et al.  A peculiar family of Jupiter Trojans: The Eurybates , 2010, 1004.4180.

[111]  Schelte J. Bus,et al.  COMET 17P/HOLMES IN OUTBURST: THE NEAR INFRARED SPECTRUM , 2009, 0903.1317.

[112]  Christopher T. Russell,et al.  The Dawn Mission to Minor Planets 4 Vesta and 1 Ceres , 2012 .

[113]  D. Lazzaro,et al.  A spectroscopic study of the Themis family , 1999 .

[114]  L. Lebofsky Infrared reflectance spectra of asteroids - A search for water of hydration , 1980 .

[115]  P. Feldman,et al.  ULTRAVIOLET DISCOVERIES AT ASTEROID (21) LUTETIA BY THE ROSETTA ALICE ULTRAVIOLET SPECTROGRAPH , 2011 .

[116]  M. Kelley,et al.  Spectra of asteroid families in support of Gaia , 2012 .

[117]  H. McSween,et al.  Toward an understanding of phyllosilicate mineralogy in the outer main asteroid belt , 2015 .

[118]  V. Al'i-Lagoa,et al.  Physical properties of B-type asteroids from WISE data , 2013, 1303.5487.

[119]  E. Asphaug,et al.  The case of the missing Ceres family , 2014 .

[120]  Tomoki Nakamura,et al.  Infrared spectroscopic taxonomy for carbonaceous chondrites from speciation of hydrous components , 2005 .

[121]  Iain Neill Reid Astrobiology: A Multidisciplinary Approach , 2006 .

[122]  Martin G. Cohen,et al.  Spectral Irradiance Calibration in the Infrared. VIII. 5-14 Micron Spectroscopy of the Asteroids Ceres, Vesta, and Pallas , 1998 .

[123]  D. Goldstein,et al.  Simulations of a comet impact on the Moon and associated ice deposition in polar cold traps , 2011 .

[124]  Andrew S. Rivkin,et al.  Hydrated silicates on main-belt asteroids: Correlation of the 0.7- and 3 micron absorption bands , 2011 .

[125]  H. Boehnhardt,et al.  Aqueous altered silicates at the surface of two Plutinos , 2004 .

[126]  B. Schmitt,et al.  Transmission infrared spectra (2–25 μm) of carbonaceous chondrites (CI, CM, CV–CK, CR, C2 ungrouped): Mineralogy, water, and asteroidal processes , 2014 .

[127]  E. Tedesco,et al.  Compositional Structure of the Asteroid Belt , 1982, Science.

[128]  Dale P. Cruikshank,et al.  Thermal emission spectroscopy (5.2–38 μm) of three Trojan asteroids with the Spitzer Space Telescope: Detection of fine-grained silicates , 2006 .

[129]  Michael E. Zolensky,et al.  Correlated alteration effects in CM carbonaceous chondrites , 1996 .

[130]  Bruce C. Murray,et al.  On the possible presence of ice on the Moon , 1961 .

[131]  A. Kryszczyńska,et al.  Near infra-red spectroscopy of the asteroid 21 Lutetia - II. Rotationally resolved spectroscopy of the surface , 2007 .

[132]  M. Gaffey,et al.  JVI Himalia: New Compositional Evidence and Interpretations for the Origin of Jupiter's Small Satellites , 2000 .

[133]  Harold F. Levison,et al.  EVIDENCE FROM THE ASTEROID BELT FOR A VIOLENT PAST EVOLUTION OF JUPITER's ORBIT , 2010, 1009.1521.

[134]  D. Vokrouhlický,et al.  Black rain: The burial of the Galilean satellites in irregular satellite debris , 2013 .

[135]  K. Tsiganis,et al.  Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets , 2005, Nature.

[136]  F. Moreno,et al.  Exploring the nature of new main-belt comets with the 10.4 m GTC telescope: (300163) 2006 VW139 , 2012, 1212.1022.

[137]  Harold F. Levison,et al.  Orbital and Collisional Evolution of the Irregular Satellites , 2003 .

[138]  Joshua Patrick Emery,et al.  The surface composition of Trojan asteroids: constraints set by scattering theory , 2004 .

[139]  Richard P. Binzel,et al.  Asteroid (101955) 1999 RQ36: Spectroscopy from 0.4 to 2.4μm and meteorite analogs , 2011 .

[140]  F. Moreno,et al.  THE DUST ENVIRONMENT OF MAIN-BELT COMET P/2012 T1 (PANSTARRS) , 2013, Astrophysical Journal.

[141]  Francesca DeMeo,et al.  The taxonomic distribution of asteroids from multi-filter all-sky photometric surveys , 2013, 1307.2424.

[142]  Harold F. Levison,et al.  Asteroids Were Born Big , 2009, 0907.2512.

[143]  R. Clark,et al.  The surface composition of Iapetus: Mapping results from Cassini VIMS , 2012 .

[144]  B. Carry,et al.  Solar System evolution from compositional mapping of the asteroid belt , 2014, Nature.

[145]  B. Schmitt,et al.  Hydrous mineralogy of CM and CI chondrites from infrared spectroscopy and their relationship with low albedo asteroids , 2010 .

[146]  Ucla,et al.  The return of activity in main-belt comet 133P/Elst–Pizarro , 2009, 0911.5522.

[147]  M. Livio,et al.  On the evolution of the snow line in protoplanetary discs , 2012, 1207.4284.

[148]  Roger N. Clark,et al.  Detection of Adsorbed Water and Hydroxyl on the Moon , 2009, Science.

[149]  A. Coradini,et al.  The activity of Main Belt comets , 2010, 1111.5699.

[150]  Alessandro Frigeri,et al.  DETECTION OF WIDESPREAD HYDRATED MATERIALS ON VESTA BY THE VIR IMAGING SPECTROMETER ON BOARD THE DAWN MISSION , 2012 .

[151]  Faith Vilas,et al.  A Cheaper, Faster, Better Way to Detect Water of Hydration on Solar System Bodies , 1994 .

[152]  V. Farmer The Layer Silicates , 1974 .

[153]  Raymond E. Arvidson,et al.  Spectral absorptions on Phobos and Deimos in the visible/near infrared wavelengths and their compositional constraints , 2014 .

[154]  David Morrison,et al.  Surface properties of asteroids - A synthesis of polarimetry, radiometry, and spectrophotometry , 1975 .

[155]  R. Clayton,et al.  Oxygen isotope studies of carbonaceous chondrites , 1999 .

[156]  B. Clark,et al.  Spectroscopic survey of X-type asteroids , 2011, 1105.3380.

[157]  Andrew F. Cheng,et al.  The NEO (175706) 1996 FG3 in the 2–4 μm spectral region: Evidence for an aqueously altered surface , 2013 .

[158]  Stephen M. Larson,et al.  Ferric Iron in Primitive Asteroids: A 0.43-μm Absorption Feature , 1993 .

[159]  John W. Salisbury,et al.  Midinfrared (2.5–13.5 μm) reflectance spectra of powdered stony meteorites , 1991 .

[160]  Andrew Scott Rivkin,et al.  Composition of hydrated near-Earth object (100085) 1992 UY4 , 2007 .

[161]  E. Wright,et al.  THERMAL MODEL CALIBRATION FOR MINOR PLANETS OBSERVED WITH WISE/NEOWISE: COMPARISON WITH INFRARED ASTRONOMICAL SATELLITE , 2011, 1106.5734.

[162]  Driss Takir,et al.  Outer Main Belt asteroids: Identification and distribution of four 3-μm spectral groups , 2011 .

[163]  T. Hiroi,et al.  Evidence of hydrated and/or hydroxylated minerals on the surface of asteroid 4 Vesta , 2003 .

[164]  D. K. Peeler,et al.  The U , 2002 .

[165]  Harry Y. McSween,et al.  Alteration in CM carbonaceous chondrites inferred from modal and chemical variations in matrix , 1979 .

[166]  Andrew Scott Rivkin,et al.  Brucite and carbonate assemblages from altered olivine-rich materials on Ceres , 2009 .

[167]  David Jewitt,et al.  The Active Asteroids , 2011 .

[168]  S. Erard,et al.  ISM observation of Phobos reinvestigated: Identification of a mixture of olivine and low‐calcium pyroxene , 2005 .

[169]  Alessandro Morbidelli,et al.  A low mass for Mars from Jupiter’s early gas-driven migration , 2011, Nature.

[170]  S. J. Sutley,et al.  USGS Digital Spectral Library splib06a , 2007 .

[171]  Stephen M. Larson,et al.  Unraveling the Zebra: Clues to the Iapetus Dark Material Composition , 1996 .

[172]  A. Brack,et al.  The fate of amino acids during simulated meteoritic impact. , 2009, Astrobiology.