Dynamics of a distributed drill string system: Characteristic parameters and stability maps

Abstract This paper involves the dynamic (stability) analysis of distributed drill-string systems. A minimal set of parameters characterizing the linearized, axial-torsional dynamics of a distributed drill string coupled through the bit-rock interaction is derived. This is found to correspond to five parameters for a simple drill string and eight parameters for a two-sectioned drill-string (e.g., corresponding to the pipe and collar sections of a drilling system). These dynamic characterizations are used to plot the inverse gain margin of the system, parametrized in the non-dimensional parameters, effectively creating a stability map covering the full range of realistic physical parameters. This analysis reveals a complex spectrum of dynamics not evident in stability analysis with lumped models, thus indicating the importance of analysis using distributed models. Moreover, it reveals trends concerning stability properties depending on key system parameters useful in the context of system and control design aiming at the mitigation of vibrations.

[1]  Nathan van de Wouw,et al.  Model-Based Robust Control of Directional Drilling Systems , 2016, IEEE Transactions on Control Systems Technology.

[2]  Nathan van de Wouw,et al.  Robust output-feedback control to eliminate stick-slip oscillations in drill-string systems , 2015 .

[3]  J S Stecki,et al.  Fluid Transmission Lines—Distributed Parameter Models Part 1: A Review of the State of the Art , 1986 .

[4]  Emmanuel M Detournay,et al.  Instability regimes and self-excited vibrations in deep drilling systems , 2014 .

[5]  Paul E. Pastusek,et al.  Drillstring Mechanics Model for Surveillance, Root Cause Analysis, and Mitigation of Torsional and Axial Vibrations , 2013 .

[6]  Henk Nijmeijer,et al.  A Semi-Analytical Study of Stick-Slip Oscillations in Drilling Systems , 2011 .

[7]  Mark W Dykstra,et al.  For Better or Worse: Applications of the Transfer Matrix Approach for Analyzing Axial and Torsional Vibration , 2015 .

[8]  Alexey Pavlov,et al.  Drilling seeking automatic control solutions , 2011 .

[9]  Emmanuel M Detournay,et al.  Multiple mode analysis of the self-excited vibrations of rotary drilling systems , 2009 .

[10]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[11]  M. Hoagland,et al.  Feedback Systems An Introduction for Scientists and Engineers SECOND EDITION , 2015 .

[12]  Y. Nishimatsu,et al.  The mechanics of rock cutting , 1972 .

[13]  G. Stépán,et al.  State-dependent delay in regenerative turning processes , 2006 .

[14]  Yuri B. Shtessel,et al.  Blood glucose regulation using higher‐order sliding mode control , 2008 .

[15]  Emmanuel M Detournay,et al.  Self-excited stick–slip oscillations of drill bits , 2004 .

[16]  Ulf Jakob F. Aarsnes,et al.  A distributed parameter systems view of control problems in drilling , 2015 .

[17]  S. A. Tobias Machine-tool vibration , 1965 .

[18]  D. J. Runia,et al.  A brief history of the Shell "Soft Torque Rotary System" and some recent case studies , 2013 .

[19]  Ole Morten Aamo,et al.  Linear stability analysis of self-excited vibrations in drilling using an infinite dimensional model , 2016 .

[20]  Nathan van de Wouw,et al.  Analysis and Control of Stick-Slip Oscillations in Drilling Systems , 2016, IEEE Transactions on Control Systems Technology.

[21]  Krishnan Nandakumar,et al.  Stability analysis of a state dependent delayed, coupled two DOF model of drill-stringvibration , 2013 .

[22]  Hans Zwart,et al.  An Introduction to Infinite-Dimensional Linear Systems Theory , 1995, Texts in Applied Mathematics.

[23]  Pierre Rouchon,et al.  Backstepping and flatness approaches for stabilization of the stick-slip phenomenon for drilling , 2013 .

[24]  Sicco Dwars,et al.  Recent Advances in Soft Torque Rotary Systems , 2015 .

[25]  Ulrich Eggers,et al.  Introduction To Infinite Dimensional Linear Systems Theory , 2016 .

[26]  Mike Sheppard Putting a Damper on Drilling ’ s Bad Vibrations , 1995 .

[27]  Nathan van de Wouw,et al.  Control of mechanical motion systems with non-collocation of actuation and friction: A Popov criterion approach for input-to-state stability and set-valued nonlinearities , 2009, Autom..

[28]  Richard M. Murray,et al.  Feedback Systems An Introduction for Scientists and Engineers , 2007 .

[29]  N. van de Wouw,et al.  Nonlinear output-feedback control of torsional vibrations in drilling systems , 2017 .

[30]  M.J.G. van de Molengraft,et al.  H/sub /spl infin// control for suppressing stick-slip in oil well drillstrings , 1998 .

[31]  Emmanuel M Detournay,et al.  A simplified model to explore the root cause of stick–slip vibrations in drilling systems with drag bits , 2007 .

[32]  Emmanuel M Detournay,et al.  Drilling response of drag bits: Theory and experiment , 2008 .

[33]  R. E. Goodson,et al.  A Survey of Modeling Techniques for Fluid Line Transients , 1972 .

[34]  Nathan van de Wouw,et al.  Nonlinear Drillstring Dynamics Analysis , 2009, SIAM J. Appl. Dyn. Syst..

[35]  F. Abbassian,et al.  Application of Stability Approach to Bit Dynamics , 1998 .

[36]  Ole Morten Aamo,et al.  Modeling and Avoidance of Heave-Induced Resonances in Offshore Drilling , 2014 .

[37]  Emmanuel M Detournay,et al.  Rock strength determination from scratch tests , 2012 .

[38]  Jan Dirk Jansen,et al.  Active damping of self-excited torsional vibrations in oil well drillstrings , 1995 .

[39]  Nathan van de Wouw,et al.  Observer-based output-feedback control to eliminate torsional drill-string vibrations , 2014, 53rd IEEE Conference on Decision and Control.

[40]  Ahmet S. Yigit,et al.  Stick-Slip and Bit-Bounce Interaction in Oil-Well Drillstrings , 2006 .