On the control of spin-boson systems

In this paper we study the so-called spinboson system, namely a spin-1/2 particle in interaction with a distinguished mode of a quantized bosonic field. We control the system via an external field acting on the bosonic part. Applying geometric control techniques to the Galerkin approximation and using perturbation theory to guarantee non-resonance of the spectrum of the drift operator, we prove approximate controllability of the system, for almost every value of the interaction parameter.

[1]  Sylvain Ervedoza,et al.  Approximate Controllability for a System of Schrödinger Equations Modeling a Single Trapped Ion , 2009 .

[2]  Law,et al.  Arbitrary control of a quantum electromagnetic field. , 1996, Physical review letters.

[3]  Michael Keyl,et al.  Controlling several atoms in a cavity , 2014, 1401.5722.

[4]  R. J. Schoelkopf,et al.  Resolving photon number states in a superconducting circuit , 2007, Nature.

[5]  J. H. Albert,et al.  Genericity of simple eigenvalues for elliptic PDE’s , 1975 .

[6]  Gabriel Stoltz,et al.  Many-body green function of degenerate systems. , 2009, Physical review letters.

[7]  Gabriel Stoltz,et al.  Gell-Mann and Low Formula for Degenerate Unperturbed States , 2009, 0906.1853.

[8]  Gabriel Stoltz,et al.  Adiabatic approximation, Gell-Mann and Low theorem, and degeneracies: A pedagogical example , 2008, 0807.4218.

[9]  H. Spohn,et al.  Space-adiabatic perturbation theory , 2002, math-ph/0201055.

[10]  Roger W. Brockett,et al.  Finite Controllability of Infinite-Dimensional Quantum Systems , 2010, IEEE Transactions on Automatic Control.

[11]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[12]  Mario Sigalotti,et al.  A Weak Spectral Condition for the Controllability of the Bilinear Schrödinger Equation with Application to the Control of a Rotating Planar Molecule , 2011, ArXiv.

[13]  Stefan Teufel,et al.  Space-adiabatic perturbation theory in quantum dynamics. , 2002, Physical review letters.

[14]  U. Boscain,et al.  Controllability of the Schrödinger Equation via Intersection of Eigenvalues , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[15]  Pierre Rouchon,et al.  Quantum systems and control 1 , 2008 .

[16]  A. Bloch,et al.  Control of trapped-ion quantum states with optical pulses. , 2004, Physical review letters.

[17]  E. Jaynes,et al.  Comparison of quantum and semiclassical radiation theories with application to the beam maser , 1962 .

[18]  D. Braak,et al.  Integrability of the Rabi model. , 2011, Physical review letters.

[19]  J. Raimond,et al.  Manipulating quantum entanglement with atoms and photons in a cavity , 2001 .