Computational Solutions of Distributed Order Reaction-Diffusion Systems Associated with Riemann-Liouville Derivatives

This article is in continuation of the authors research attempts to derive computational solutions of an unified reaction-diffusion equation of distributed order associated with Caputo derivatives as the time-derivative and Riesz-Feller derivative as space derivative. This article presents computational solutions of distributed order fractional reaction-diffusion equations associated with Riemann-Liouville derivatives of fractional orders as the time-derivatives and Riesz-Feller fractional derivatives as the space derivatives. The method followed in deriving the solution is that of joint Laplace and Fourier transforms. The solution is derived in a closed and computational form in terms of the familiar Mittag-Leffler function. It provides an elegant extension of results available in the literature. The results obtained are presented in the form of two theorems. Some results associated specifically with fractional Riesz derivatives are also derived as special cases of the most general result. It will be seen that in case of distributed order fractional reaction-diffusion, the solution comes in a compact and closed form in terms of a generalization of the Kampe de Feriet hypergeometric series in two variables. The convergence of the double series occurring in the solution is also given.

[1]  F. Mainardi,et al.  The fundamental solution of the space-time fractional diffusion equation , 2007, cond-mat/0702419.

[2]  Arak M. Mathai,et al.  Further solutions of fractional reaction-diffusion equations in terms of the H-function , 2007, J. Comput. Appl. Math..

[3]  V. V. Gafiychuk,et al.  Nonlinear oscillations and stability domains in fractional reaction-diffusion systems , 2007 .

[4]  M. Saxton,et al.  Anomalous subdiffusion in fluorescence photobleaching recovery: a Monte Carlo study. , 2001, Biophysical journal.

[5]  I M Sokolov,et al.  From diffusion to anomalous diffusion: a century after Einstein's Brownian motion. , 2005, Chaos.

[6]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[7]  V. V. Gafiychuk,et al.  Mathematical modeling of pattern formation in sub- and supperdiffusive reaction-diffusion systems , 2006, nlin/0611005.

[8]  A. M. Mathai,et al.  Solution of Generalized Fractional Reaction-Diffusion Equations , 2006 .

[9]  T. Kaczorek,et al.  Fractional Differential Equations , 2015 .

[10]  M. Saxton Anomalous diffusion due to binding: a Monte Carlo study. , 1996, Biophysical journal.

[11]  Bruce Ian Henry,et al.  Existence of Turing Instabilities in a Two-Species Fractional Reaction-Diffusion System , 2002, SIAM J. Appl. Math..

[12]  H. Srivastava,et al.  A Note on the Convergence of KAMP DE FRIET's Double Hypergeometric Series , 1972 .

[13]  A. M. Mathai,et al.  Fractional Reaction-Diffusion Equations , 2006, math/0604473.

[14]  L. Boyadjiev,et al.  INTEGRAL TRANSFORMS METHOD TO SOLVE A TIME-SPACE FRACTIONAL DIFFUSION EQUATION , 2010 .

[15]  S L Wearne,et al.  Turing pattern formation in fractional activator-inhibitor systems. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  R. K. Saxena,et al.  Computational solution of a fractional generalization of the Schrödinger equation occurring in quantum mechanics , 2010, Appl. Math. Comput..

[17]  A. M. Mathai,et al.  Distributed order reaction-diffusion systems associated with Caputo derivatives , 2011, 1109.4841.

[18]  N. Ford,et al.  Analysis of Fractional Differential Equations , 2002 .

[19]  Xiaoyi Guo,et al.  Some physical applications of fractional Schrödinger equation , 2006 .

[20]  Hans Engler,et al.  On the Speed of Spread for Fractional Reaction-Diffusion Equations , 2009, 0908.0024.

[21]  Fawang Liu,et al.  THE FUNDAMENTAL AND NUMERICAL SOLUTIONS OF THE RIESZ SPACE-FRACTIONAL REACTION–DISPERSION EQUATION , 2008, The ANZIAM Journal.

[22]  Arak M. Mathai,et al.  Analysis of Solar Neutrino Data from Super-Kamiokande I and II , 2014, Entropy.

[23]  P. A. P. Moran,et al.  An introduction to probability theory , 1968 .

[24]  A. M. Mathai,et al.  Reaction-Diffusion Systems and Nonlinear Waves , 2006 .

[25]  I. Prigogine,et al.  Formative Processes. (Book Reviews: Self-Organization in Nonequilibrium Systems. From Dissipative Structures to Order through Fluctuations) , 1977 .

[26]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[27]  I. M. Sokolov,et al.  Distributed-Order Fractional Kinetics , 2004 .

[28]  M. Naber DISTRIBUTED ORDER FRACTIONAL SUB-DIFFUSION , 2003, math-ph/0311047.

[29]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[30]  T. A. M. Langlands,et al.  Solution of a modified fractional diffusion equation , 2006 .

[31]  T. MacRobert Higher Transcendental Functions , 1955, Nature.

[32]  F. Mainardi,et al.  Fox H functions in fractional diffusion , 2005 .

[33]  William Feller,et al.  An Introduction to Probability Theory and Its Applications, Vol. 2 , 1967 .

[34]  Francesco Mainardi,et al.  Approximation of Levy-Feller Diffusion by Random Walk , 1999 .

[35]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[36]  M. M. Djrbashian,et al.  Harmonic analysis and boundary value problems in the complex domain , 1993 .

[37]  A. M. Mathai,et al.  Analysis of Solar Neutrino Data from SuperKamiokande I and II: Back to the Solar Neutrino Problem , 2012 .

[38]  M. T. Cicero FRACTIONAL CALCULUS AND WAVES IN LINEAR VISCOELASTICITY , 2012 .

[39]  T. R. Prabhakar A SINGULAR INTEGRAL EQUATION WITH A GENERALIZED MITTAG LEFFLER FUNCTION IN THE KERNEL , 1971 .

[40]  E. Lazzaro,et al.  Reaction-Diffusion Problems in the Physics of Hot Plasmas , 2000 .

[41]  Ram K. Saxena,et al.  Exact solutions of triple-order time-fractional differential equations for anomalous relaxation and diffusion I: The accelerating case , 2011 .

[42]  William Feller,et al.  On a Generalization of Marcel Riesz’ Potentials and the Semi-Groups generated by them , 2015 .

[43]  M. Cross,et al.  Pattern formation outside of equilibrium , 1993 .

[44]  S. Wearne,et al.  Fractional Reaction-Diffusion , 2000 .

[45]  Francesco Mainardi,et al.  Evolution equations for the probabilistic generalization of the Voigt profile function , 2007, J. Comput. Appl. Math..

[46]  A. M. Mathai,et al.  The H-Function: Theory and Applications , 2009 .

[47]  M. Saxton Anomalous diffusion due to obstacles: a Monte Carlo study. , 1994, Biophysical journal.