Computational Solutions of Distributed Order Reaction-Diffusion Systems Associated with Riemann-Liouville Derivatives
暂无分享,去创建一个
[1] F. Mainardi,et al. The fundamental solution of the space-time fractional diffusion equation , 2007, cond-mat/0702419.
[2] Arak M. Mathai,et al. Further solutions of fractional reaction-diffusion equations in terms of the H-function , 2007, J. Comput. Appl. Math..
[3] V. V. Gafiychuk,et al. Nonlinear oscillations and stability domains in fractional reaction-diffusion systems , 2007 .
[4] M. Saxton,et al. Anomalous subdiffusion in fluorescence photobleaching recovery: a Monte Carlo study. , 2001, Biophysical journal.
[5] I M Sokolov,et al. From diffusion to anomalous diffusion: a century after Einstein's Brownian motion. , 2005, Chaos.
[6] Feller William,et al. An Introduction To Probability Theory And Its Applications , 1950 .
[7] V. V. Gafiychuk,et al. Mathematical modeling of pattern formation in sub- and supperdiffusive reaction-diffusion systems , 2006, nlin/0611005.
[8] A. M. Mathai,et al. Solution of Generalized Fractional Reaction-Diffusion Equations , 2006 .
[9] T. Kaczorek,et al. Fractional Differential Equations , 2015 .
[10] M. Saxton. Anomalous diffusion due to binding: a Monte Carlo study. , 1996, Biophysical journal.
[11] Bruce Ian Henry,et al. Existence of Turing Instabilities in a Two-Species Fractional Reaction-Diffusion System , 2002, SIAM J. Appl. Math..
[12] H. Srivastava,et al. A Note on the Convergence of KAMP DE FRIET's Double Hypergeometric Series , 1972 .
[13] A. M. Mathai,et al. Fractional Reaction-Diffusion Equations , 2006, math/0604473.
[14] L. Boyadjiev,et al. INTEGRAL TRANSFORMS METHOD TO SOLVE A TIME-SPACE FRACTIONAL DIFFUSION EQUATION , 2010 .
[15] S L Wearne,et al. Turing pattern formation in fractional activator-inhibitor systems. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.
[16] R. K. Saxena,et al. Computational solution of a fractional generalization of the Schrödinger equation occurring in quantum mechanics , 2010, Appl. Math. Comput..
[17] A. M. Mathai,et al. Distributed order reaction-diffusion systems associated with Caputo derivatives , 2011, 1109.4841.
[18] N. Ford,et al. Analysis of Fractional Differential Equations , 2002 .
[19] Xiaoyi Guo,et al. Some physical applications of fractional Schrödinger equation , 2006 .
[20] Hans Engler,et al. On the Speed of Spread for Fractional Reaction-Diffusion Equations , 2009, 0908.0024.
[21] Fawang Liu,et al. THE FUNDAMENTAL AND NUMERICAL SOLUTIONS OF THE RIESZ SPACE-FRACTIONAL REACTION–DISPERSION EQUATION , 2008, The ANZIAM Journal.
[22] Arak M. Mathai,et al. Analysis of Solar Neutrino Data from Super-Kamiokande I and II , 2014, Entropy.
[23] P. A. P. Moran,et al. An introduction to probability theory , 1968 .
[24] A. M. Mathai,et al. Reaction-Diffusion Systems and Nonlinear Waves , 2006 .
[25] I. Prigogine,et al. Formative Processes. (Book Reviews: Self-Organization in Nonequilibrium Systems. From Dissipative Structures to Order through Fluctuations) , 1977 .
[26] H. Srivastava,et al. Theory and Applications of Fractional Differential Equations , 2006 .
[27] I. M. Sokolov,et al. Distributed-Order Fractional Kinetics , 2004 .
[28] M. Naber. DISTRIBUTED ORDER FRACTIONAL SUB-DIFFUSION , 2003, math-ph/0311047.
[29] O. Marichev,et al. Fractional Integrals and Derivatives: Theory and Applications , 1993 .
[30] T. A. M. Langlands,et al. Solution of a modified fractional diffusion equation , 2006 .
[31] T. MacRobert. Higher Transcendental Functions , 1955, Nature.
[32] F. Mainardi,et al. Fox H functions in fractional diffusion , 2005 .
[33] William Feller,et al. An Introduction to Probability Theory and Its Applications, Vol. 2 , 1967 .
[34] Francesco Mainardi,et al. Approximation of Levy-Feller Diffusion by Random Walk , 1999 .
[35] K. B. Oldham,et al. The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .
[36] M. M. Djrbashian,et al. Harmonic analysis and boundary value problems in the complex domain , 1993 .
[37] A. M. Mathai,et al. Analysis of Solar Neutrino Data from SuperKamiokande I and II: Back to the Solar Neutrino Problem , 2012 .
[38] M. T. Cicero. FRACTIONAL CALCULUS AND WAVES IN LINEAR VISCOELASTICITY , 2012 .
[39] T. R. Prabhakar. A SINGULAR INTEGRAL EQUATION WITH A GENERALIZED MITTAG LEFFLER FUNCTION IN THE KERNEL , 1971 .
[40] E. Lazzaro,et al. Reaction-Diffusion Problems in the Physics of Hot Plasmas , 2000 .
[41] Ram K. Saxena,et al. Exact solutions of triple-order time-fractional differential equations for anomalous relaxation and diffusion I: The accelerating case , 2011 .
[42] William Feller,et al. On a Generalization of Marcel Riesz’ Potentials and the Semi-Groups generated by them , 2015 .
[43] M. Cross,et al. Pattern formation outside of equilibrium , 1993 .
[44] S. Wearne,et al. Fractional Reaction-Diffusion , 2000 .
[45] Francesco Mainardi,et al. Evolution equations for the probabilistic generalization of the Voigt profile function , 2007, J. Comput. Appl. Math..
[46] A. M. Mathai,et al. The H-Function: Theory and Applications , 2009 .
[47] M. Saxton. Anomalous diffusion due to obstacles: a Monte Carlo study. , 1994, Biophysical journal.