HABITABLE ZONES OF POST-MAIN SEQUENCE STARS

Once a star leaves the main sequence and becomes a red giant, its Habitable Zone (HZ) moves outward, promoting detectable habitable conditions at larger orbital distances. We use a one-dimensional radiative-convective climate and stellar evolutionary models to calculate post-MS HZ distances for a grid of stars from 3,700K to 10,000K (~M1 to A5 stellar types) for different stellar metallicities. The post-MS HZ limits are comparable to the distances of known directly imaged planets. We model the stellar as well as planetary atmospheric mass loss during the Red Giant Branch (RGB) and Asymptotic Giant Branch (AGB) phases for super-Moons to super-Earths. A planet can stay between 200 million years up to 9 Gyr in the post-MS HZ for our hottest and coldest grid stars, respectively, assuming solar metallicity. These numbers increase for increased stellar metallicity. Total atmospheric erosion only occurs for planets in close-in orbits. The post-MS HZ orbital distances are within detection capabilities of direct imaging techniques.

[1]  J. Kasting,et al.  Can increased atmospheric CO2 levels trigger a runaway greenhouse? , 2014, Astrobiology.

[2]  E. Mamajek ON THE AGE AND BINARITY OF FOMALHAUT , 2012, 1206.6353.

[3]  L. Girardi,et al.  Scaled solar tracks and isochrones in a large region of the Z-Y plane. II. From 2.5 to 20 solar masses , 2009, 0911.2419.

[4]  Michael S. Bessell,et al.  The β Pictoris Moving Group , 2001 .

[5]  Norman H Sleep,et al.  Habitable zone limits for dry planets. , 2011, Astrobiology.

[6]  L. Girardi,et al.  EVOLUTION OF THERMALLY PULSING ASYMPTOTIC GIANT BRANCH STARS. IV. CONSTRAINING MASS LOSS AND LIFETIMES OF LOW MASS, LOW METALLICITY AGB STARS , 2014, 1406.0676.

[7]  J. Schneider,et al.  Can Life Develop in the Expanded Habitable Zones around Red Giant Stars? , 2005, astro-ph/0503520.

[8]  Sara Seager,et al.  TOWARD THE MINIMUM INNER EDGE DISTANCE OF THE HABITABLE ZONE , 2013, 1304.3714.

[9]  A. Renzini,et al.  Tests of evolutionary sequences using color-magnitude diagrams of globular clusters , 1988 .

[10]  W. Danchi,et al.  EFFECT OF METALLICITY ON THE EVOLUTION OF THE HABITABLE ZONE FROM THE PRE-MAIN SEQUENCE TO THE ASYMPTOTIC GIANT BRANCH AND THE SEARCH FOR LIFE , 2013, 1304.1464.

[11]  T. Ackerman,et al.  Climatic consequences of very high carbon dioxide levels in the earth's early atmosphere. , 1986, Science.

[12]  Mark Clampin,et al.  STIS CORONAGRAPHIC IMAGING OF FOMALHAUT: MAIN BELT STRUCTURE AND THE ORBIT OF FOMALHAUT b , 2013, 1305.2222.

[13]  Lisa Kaltenegger,et al.  THE HABITABLE ZONES OF PRE-MAIN-SEQUENCE STARS , 2014, 1412.1764.

[14]  S. Saar,et al.  TESTING A PREDICTIVE THEORETICAL MODEL FOR THE MASS LOSS RATES OF COOL STARS , 2011, 1108.4369.

[15]  Gustaf Arrhenius,et al.  Early Mars and early Earth: paleoenvironments for the emergence of life , 1997, Optics & Photonics.

[16]  HR 8799: A Link between γ Doradus Variables and λ Bootis Stars , 1999 .

[17]  A. Sweigart,et al.  Evolutionary sequences for red giant stars , 1978 .

[18]  C. McKay,et al.  Titan under a red giant sun: A new kind of “habitable” moon , 1997, Geophysical research letters.

[19]  A. Raga,et al.  Mixing layers in stellar outflows , 1991 .

[20]  Robert M. Haberle,et al.  Simulations of the Atmospheres of Synchronously Rotating Terrestrial Planets Orbiting M Dwarfs: Conditions for Atmospheric Collapse and the Implications for Habitability☆ , 1997 .

[21]  Shawn Domagal-Goldman,et al.  HABITABLE ZONES AROUND MAIN-SEQUENCE STARS: DEPENDENCE ON PLANETARY MASS , 2014, 1404.5292.

[22]  A. Segura,et al.  Atmospheric mass loss by stellar wind from planets around main sequence M stars , 2010, 1006.0021.

[23]  X. Delfosse,et al.  Habitable planets around the star Gliese 581 , 2007, 0710.5294.

[24]  Tyler D. Robinson,et al.  Warming early Mars with CO 2 and H 2 , 2014 .

[25]  A. Renzini,et al.  The development of the red giant branch. II - Astrophysical properties , 1990 .

[26]  Eva Villaver,et al.  Can Planets Survive Stellar Evolution? , 2007, astro-ph/0702724.

[27]  H. Gail,et al.  Mineral formation in stellar winds - III. Dust formation in S stars , 2002 .

[28]  C. Baranec,et al.  AN ANCIENT EXTRASOLAR SYSTEM WITH FIVE SUB-EARTH-SIZE PLANETS , 2015, 1501.06227.

[29]  P. Moroni,et al.  Uncertainties in grid-based estimates of stellar mass and radius - SCEPtER: Stellar CharactEristics Pisa Estimation gRid , 2013, 1311.7358.

[30]  Manoj Joshi,et al.  Climate model studies of synchronously rotating planets. , 2003, Astrobiology.

[31]  James F Kasting,et al.  Remote life-detection criteria, habitable zone boundaries, and the frequency of Earth-like planets around M and late K stars , 2013, Proceedings of the National Academy of Sciences.

[32]  A New Version of Reimers' Law of Mass Loss Based on a Physical Approach , 2005, astro-ph/0507598.

[33]  Astronomy Department,et al.  Scaled solar tracks and isochrones in a large region of the Z-Y plane I. From the ZAMS to the TP-A , 2008, 0803.1460.

[34]  J. Kasting,et al.  Habitable zones around main sequence stars. , 1993, Icarus.

[35]  P. Wood,et al.  Evolution of Low- and Intermediate-Mass Stars to the End of the Asymptotic Giant Branch with Mass Loss , 1993 .

[36]  S. Stern Delayed gratification habitable zones: when deep outer solar system regions become balmy during post-main sequence stellar evolution. , 2002, Astrobiology.

[37]  The HR Diagram , 1978 .

[38]  Alessandro Morbidelli,et al.  The Structure of the Kuiper Belt: Size Distribution and Radial Extent , 2001 .

[39]  T. Belloni,et al.  CORRELATIONS IN HORIZONTAL BRANCH OSCILLATIONS AND BREAK COMPONENTS IN XTE J1701-462 AND GX 17+2 , 2014, 1411.1137.

[40]  S. Mineshige,et al.  GLOBAL STRUCTURE OF THREE DISTINCT ACCRETION FLOWS AND OUTFLOWS AROUND BLACK HOLES FROM TWO-DIMENSIONAL RADIATION-MAGNETOHYDRODYNAMIC SIMULATIONS , 2011, 1105.5474.

[41]  H. Lammer,et al.  Planetary Aeronomy: Atmosphere Environments in Planetary Systems , 2004 .

[42]  Franck Selsis,et al.  3D climate modeling of close-in land planets: Circulation patterns, climate moist bistability and habitability , 2013, 1303.7079.

[43]  S. Stern The evolution of comets in the Oort cloud and Kuiper belt , 2003, Nature.

[44]  D. Sasselov,et al.  WATER-PLANETS IN THE HABITABLE ZONE: ATMOSPHERIC CHEMISTRY, OBSERVABLE FEATURES, AND THE CASE OF KEPLER-62e AND -62f , 2013, 1304.5058.

[45]  Darko Jevremovic,et al.  The Dartmouth Stellar Evolution Database , 2008, 0804.4473.

[46]  E. Baron,et al.  The ACS Survey of Galactic Globular Clusters. II. Stellar Evolution Tracks, Isochrones, Luminosity Functions, and Synthetic Horizontal-Branch Models , 2007, 0706.0847.

[47]  R. Pierrehumbert,et al.  HYDROGEN GREENHOUSE PLANETS BEYOND THE HABITABLE ZONE , 2011, 1105.0021.

[48]  D. Sasselov,et al.  EXPLORING THE HABITABLE ZONE FOR KEPLER PLANETARY CANDIDATES , 2011, 1105.0861.

[49]  Ryan C. Terrien,et al.  HABITABLE ZONES AROUND MAIN-SEQUENCE STARS: NEW ESTIMATES , 2013, 1301.6674.

[50]  Francois Forget,et al.  Increased insolation threshold for runaway greenhouse processes on Earth-like planets , 2013, Nature.

[51]  David R. Alexander,et al.  Model atmospheres and spectra: The role of dust , 2003 .

[52]  Julien H. Girard,et al.  A COMBINED VERY LARGE TELESCOPE AND GEMINI STUDY OF THE ATMOSPHERE OF THE DIRECTLY IMAGED PLANET, β PICTORIS b , 2013, 1306.0610.

[53]  Diana Valencia,et al.  Detailed Models of Super-Earths: How Well Can We Infer Bulk Properties? , 2007, 0704.3454.

[54]  B. Macintosh,et al.  Images of a fourth planet orbiting HR 8799 , 2010, Nature.

[55]  Contributions to the Nearby Stars (NStars) Project: Spectroscopy of Stars Earlier than M0 within 40 Parsecs: The Northern Sample. I. , 2003, astro-ph/0308182.