DETERMINATION OF THE ASYNCHRONOUS LOAD ON A ROTOR FROM THE MEASURED INTERNAL FORCES

Experimental contributions currently play an important role in determining hydraulic forces due to cavitation. Up to the present date, there is no computational analysis which has proven to be successful in this domain. Experiments are usually carried out to measure the resulting internal forces in a model because these forces are crucial for designing elements under cavitational flows. This paper presents a numerical approach using the theory of rotordynamics coupled with the finite element method (FEM) to determine the hydraulic load on a rotor from the internal forces measured in a cross-section of the rotor. Once the load is found, a program developed can be used to compute the internal forces in any cross-section of interest and to evaluate dynamic effects on the rotor. Two illustrative examples are presented to show the validity of this approach.