Online identification of adsorption isotherms in SMB processes via efficient moving horizon state and parameter estimation

Abstract In this paper, a concept to identify the adsorption isotherm of Simulated Moving Bed processes online during the operation is proposed. The influence of model parameters on the measurements is analyzed by a sensitivity analysis which enables to identify the set of parameters that can be estimated simultaneously. The parameters are estimated in real-time by a moving horizon state and parameter estimation scheme. Numerical simulations of validated models for separation problems with nonlinear isotherms of Langmuir type are presented. Furthermore, it is it shown that a structural plant/model mismatch in the void fraction can be compensated to a large extent by modifying the Henry coefficients of the adsorption isotherm such that the estimated model can be used in the context of online optimizing control.

[1]  Manfred Morari,et al.  Experimental implementation of automatic 'cycle to cycle' control of a chiral simulated moving bed separation. , 2007, Journal of chromatography. A.

[2]  Giorgio Battistelli,et al.  Unfalsified Virtual Reference Adaptive Switching Control of Plants with Persistent Disturbances , 2008 .

[3]  Manfred Morari,et al.  Optimizing control of simulated moving beds--experimental implementation. , 2005, Journal of chromatography. A.

[4]  Jaleel Valappil,et al.  Systematic estimation of state noise statistics for extended Kalman filters , 2000 .

[5]  Sebastian Engell,et al.  Optimierungsbasierte Regelung des Hashimoto-SMB-ProzessesOptimizing Control of the Hashimoto SMB Process , 2009, Autom..

[6]  H. Bock Numerical Treatment of Inverse Problems in Chemical Reaction Kinetics , 1981 .

[7]  Sebastian Engell,et al.  PARAMETER AND STATE ESTIMATION IN CHROMATOGRAPHIC SMB PROCESSES WITH INDIVIDUAL COLUMNS AND NONLINEAR ADSORPTION ISOTHERMS , 2006 .

[8]  Sebastian Engell,et al.  Engineering of Online Optimizing Control - A Case Study: Reactive SMB Chromatography , 2008 .

[9]  Ernst Dieter Gilles,et al.  State and parameter estimation for adsorption columns by nonlinear distributed parameter state observers , 1994 .

[10]  G. Dünnebier,et al.  Modelling and simulation of nonlinear chromatographic separation processes: a comparison of different modelling approaches , 2000 .

[11]  Mazen Alamir,et al.  A flexible nonlinear model predictive control scheme for quality/performance handling in nonlinear S , 2005 .

[12]  C. Wen,et al.  Longitudinal dispersion of liquid flowing through fixed and fluidized beds , 1968 .

[13]  Henner Schmidt-Traub,et al.  Optimal design of batch and simulated moving bed chromatographic separation processes. , 2002, Journal of chromatography. A.

[14]  L. Biegler,et al.  A fast moving horizon estimation algorithm based on nonlinear programming sensitivity , 2008 .

[15]  Tingyue Gu,et al.  Mathematical Modeling and Scale-up of Liquid Chromatography , 1995 .

[16]  Jay H. Lee,et al.  A moving horizon‐based approach for least‐squares estimation , 1996 .

[17]  Sebastian Engell,et al.  Optimization-based control of a reactive simulated moving bed process for glucose isomerization , 2004 .

[18]  Johannes P. Schlöder,et al.  Schnelle Algorithmen für die Zustands- und Parameterschätzung auf bewegten Horizonten (Fast Algorithms for State and Parameter Estimation on Moving Horizons) , 2006, Autom..

[19]  Sebastian Engell,et al.  OPTIMIZING CONTROL OF THE HASHIMOTO SMB PROCESS: EXPERIMENTAL APPLICATION , 2007 .

[20]  Hans Joachim Ferreau,et al.  Efficient Numerical Methods for Nonlinear MPC and Moving Horizon Estimation , 2009 .

[21]  Hans Bock,et al.  Efficient moving horizon state and parameter estimation for SMB processes , 2009 .

[22]  Manfred Morari,et al.  Optimizing control of an experimental simulated moving bed unit , 2006 .

[23]  Jan Lunze,et al.  Modelling and state observation of Simulated Moving Bed processes , 2003, 2003 European Control Conference (ECC).

[24]  Jay H. Lee,et al.  Automatic control of simulated moving beds , 2004 .

[25]  S. Engell,et al.  Optimization of simulated moving bed and Varicol processes. , 2003, Journal of chromatography. A.

[26]  Cristian Grossmann,et al.  ‘Cycle to cycle’ optimizing control of simulated moving beds , 2008 .

[27]  L. Grüne,et al.  Nonlinear Model Predictive Control : Theory and Algorithms. 2nd Edition , 2011 .

[28]  MORITZ DIEHL,et al.  A Real-Time Iteration Scheme for Nonlinear Optimization in Optimal Feedback Control , 2005, SIAM J. Control. Optim..

[29]  Ernst Dieter Gilles,et al.  Automatic control of the simulated moving bed process for C8 aromatics separation using asymptotically exact input/output-linearization , 1999 .

[30]  Willi Jäger,et al.  Modelling of Chemical Reaction Systems , 1981 .

[31]  Sebastian Engell Feedback control for optimal process operation , 2007 .

[32]  M. Diehl,et al.  Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations , 2000 .

[33]  Sebastian Engell,et al.  Optimisation and control of chromatography , 2005, Comput. Chem. Eng..

[34]  Mazen Alamir,et al.  Nonlinear receding-horizon state estimation for dispersive adsorption columns with nonlinear isotherm , 2003 .