The DES Bright Arcs Survey: Hundreds of Candidate Strongly Lensed Galaxy Systems from the Dark Energy Survey Science Verification and Year 1 Observations

We report the results of searches for strong gravitational lens systems in the Dark Energy Survey (DES) Science Verification and Year 1 observations. The Science Verification data span approximately 250 sq. deg. with a median i-band limiting magnitude for extended objects (10σ) of 23.0. The Year 1 data span approximately 2000 sq. deg. and have an i-band limiting magnitude for extended objects (10σ) of 22.9. As these data sets are both wide and deep, they are particularly useful for identifying strong gravitational lens candidates. Potential strong gravitational lens candidate systems were initially identified based on a color and magnitude selection in the DES object catalogs or because the system is at the location of a previously identified galaxy cluster. Cutout images of potential candidates were then visually scanned using an object viewer and numerically ranked according to whether or not we judged them to be likely strong gravitational lens systems. Having scanned nearly 400,000 cutouts, we present 374 candidate strong lens systems, of which 348 are identified for the first time. We provide the R.A. and decl., the magnitudes and photometric properties of the lens and source objects, and the distance (radius) of the source(s) from the lens center for each system.

[1]  D. Gerdes,et al.  Discovery of the Lensed Quasar System DES J0408-5354 , 2017, 1702.00072.

[2]  G. Meylan,et al.  H0LiCOW - V. New COSMOGRAIL time delays of HE 0435-1223: H0 to 3.8 per cent precision from strong lensing in a flat ΛCDM model , 2016, 1607.01790.

[3]  Kyler Kuehn,et al.  VDES J2325-5229 a z=2.7 gravitationally lensed quasar discovered using morphology-independent supervised machine learning , 2016, 1607.01391.

[4]  G. Meylan,et al.  H0LiCOW – I. H0 Lenses in COSMOGRAIL's wellspring: program overview , 2016, 1607.00017.

[5]  M. Makler,et al.  A neural network gravitational arc finder based on the Mediatrix filamentation method , 2016, 1607.04644.

[6]  P. Dubath,et al.  The PCA Lens-Finder: application to CFHTLS , 2016, 1605.04309.

[7]  A. Walker,et al.  The Canarias Einstein Ring: a Newly Discovered Optical Einstein Ring , 2016, 1605.03938.

[8]  R. Nichol,et al.  THE REDMAPPER GALAXY CLUSTER CATALOG FROM DES SCIENCE VERIFICATION DATA , 2016, The Astrophysical Journal Supplement Series.

[9]  R. Nichol,et al.  The Dark Energy Survey: more than dark energy - an overview , 2016, 1601.00329.

[10]  A. Amara,et al.  The mass-sheet degeneracy and time-delay cosmography: analysis of the strong lens RXJ1131-1231 , 2015, 1511.03662.

[11]  R. Nichol,et al.  redMaGiC: selecting luminous red galaxies from the DES Science Verification data , 2015, 1507.05460.

[12]  C. Lintott,et al.  Space Warps II. New gravitational lens candidates from the CFHTLS discovered through citizen science , 2015, 1504.05587.

[13]  Edwin Simpson,et al.  Space Warps – I. Crowdsourcing the discovery of gravitational lenses , 2015, 1504.06148.

[14]  R. Nichol,et al.  OBSERVATION AND CONFIRMATION OF SIX STRONG-LENSING SYSTEMS IN THE DARK ENERGY SURVEY SCIENCE VERIFICATION DATA , 2015, 1512.03062.

[15]  M. Meneghetti,et al.  THE DETECTION AND STATISTICS OF GIANT ARCS BEHIND CLASH CLUSTERS , 2015, 1511.04002.

[16]  Katrin Heitmann,et al.  PICS: SIMULATIONS OF STRONG GRAVITATIONAL LENSING IN GALAXY CLUSTERS , 2015, 1511.03673.

[17]  Christopher J. Miller,et al.  Discovery of two gravitationally lensed quasars in the Dark Energy Survey , 2015, 1508.01203.

[18]  M. Sullivan,et al.  THE DIFFERENCE IMAGING PIPELINE FOR THE TRANSIENT SEARCH IN THE DARK ENERGY SURVEY , 2015, 1507.05137.

[19]  T. Collett THE POPULATION OF GALAXY–GALAXY STRONG LENSES IN FORTHCOMING OPTICAL IMAGING SURVEYS , 2015, 1507.02657.

[20]  A. Amara,et al.  GRAVITATIONAL LENS MODELING WITH BASIS SETS , 2015, 1504.07629.

[21]  J. Frieman,et al.  DES J0454−4448 : discovery of the first luminous z ≥ 6 quasar from the Dark Energy Survey , 2015, 1504.03264.

[22]  T. Treu,et al.  LUMINOUS AND DARK MATTER PROFILES FROM GALAXIES TO CLUSTERS: BRIDGING THE GAP WITH GROUP-SCALE LENSES , 2015, 1503.05282.

[23]  Surhud More,et al.  Gravitational lens modelling in a citizen science context , 2015, 1502.00008.

[24]  T. Treu,et al.  Gravitational Lensing: Einstein’s unfinished symphony , 2015 .

[25]  Yuanyuan Zhang,et al.  Crowded Cluster Cores: An Algorithm for Deblending in Dark Energy Survey Images , 2014, 1409.2885.

[26]  Jiangang Hao,et al.  THE SLOAN DIGITAL SKY SURVEY COADD: 275 deg2 OF DEEP SLOAN DIGITAL SKY SURVEY IMAGING ON STRIPE 82 , 2014, The Astrophysical Journal.

[27]  Adrian T. Lee,et al.  GALAXY CLUSTERS DISCOVERED VIA THE SUNYAEV–ZEL'DOVICH EFFECT IN THE 2500-SQUARE-DEGREE SPT-SZ SURVEY , 2014, 1409.0850.

[28]  B. Yanny,et al.  The Dark Energy Survey and operations: Year 1 , 2014, Astronomical Telescopes and Instrumentation.

[29]  R. Nichol,et al.  Photometric redshift analysis in the Dark Energy Survey Science Verification data , 2014, 1406.4407.

[30]  M. Auger,et al.  The evolution of late-type galaxies from CASSOWARY lensing systems , 2014, 1406.1114.

[31]  M. Auger,et al.  Cosmological constraints from the double source plane lens SDSSJ0946+1006 , 2014, 1403.5278.

[32]  G. Meylan,et al.  A PCA-based automated finder for galaxy-scale strong lenses , 2014, 1403.1063.

[33]  P. Marshall,et al.  RingFinder: AUTOMATED DETECTION OF GALAXY-SCALE GRAVITATIONAL LENSES IN GROUND-BASED MULTI-FILTER IMAGING DATA , 2014, 1403.1041.

[34]  Andras Gaspar,et al.  THE DECAY OF DEBRIS DISKS AROUND SOLAR-TYPE STARS , 2014, 1402.6308.

[35]  M. Oguri,et al.  THE PHYSICAL CONDITIONS, METALLICITY AND METAL ABUNDANCE RATIOS IN A HIGHLY MAGNIFIED GALAXY AT z = 3.6252 , 2013, 1310.6695.

[36]  A. Finoguenov,et al.  redMaPPer. I. ALGORITHM AND SDSS DR8 CATALOG , 2013, 1303.3562.

[37]  B. Benson,et al.  Large gas reservoirs and free–free emission in two lensed star-forming galaxies at z = 2.7 , 2013, 1305.0614.

[38]  R. Mandelbaum,et al.  A HIGHLY ELONGATED PROMINENT LENS AT z = 0.87: FIRST STRONG-LENSING ANALYSIS OF EL GORDO , 2013, 1304.0455.

[39]  M. Meneghetti,et al.  Arc Statistics , 2013, 1303.3363.

[40]  M. Auger,et al.  The CASSOWARY spectroscopy survey: A new sample of gravitationally lensed galaxies in SDSS , 2013, 1302.2663.

[41]  Jeffrey M. Kubo,et al.  THE SLOAN BRIGHT ARCS SURVEY: TEN STRONG GRAVITATIONAL LENSING CLUSTERS AND EVIDENCE OF OVERCONCENTRATION , 2012, 1211.1421.

[42]  G. Meylan,et al.  TWO ACCURATE TIME-DELAY DISTANCES FROM STRONG LENSING: IMPLICATIONS FOR COSMOLOGY , 2012, 1208.6010.

[43]  A. Lange,et al.  OPTICAL AND X-RAY OBSERVATIONS OF THE MERGING CLUSTER AS1063 , 2012 .

[44]  J. Mohr,et al.  REDSHIFTS, SAMPLE PURITY, AND BCG POSITIONS FOR THE GALAXY CLUSTER CATALOG FROM THE FIRST 720 SQUARE DEGREES OF THE SOUTH POLE TELESCOPE SURVEY , 2012, 1207.4369.

[45]  Emmanuel Bertin,et al.  The Dark Energy Survey data processing and calibration system , 2012, Other Conferences.

[46]  S. Kong,et al.  MODELING THE MULTIWAVELENGTH LIGHT CURVES OF PSR B1259-63/LS 2883. II. THE EFFECTS OF ANISOTROPIC PULSAR WIND AND DOPPLER BOOSTING , 2012, 1205.2147.

[47]  M. Lueker,et al.  GALAXY CLUSTERS DISCOVERED VIA THE SUNYAEV–ZEL’DOVICH EFFECT IN THE FIRST 720 SQUARE DEGREES OF THE SOUTH POLE TELESCOPE SURVEY , 2012, 1203.5775.

[48]  P. Marshall,et al.  Constraining the dark energy equation of state with double‐source plane strong lenses , 2012, 1203.2758.

[49]  J. Kneib,et al.  The CFHTLS-Strong Lensing Legacy Survey (SL2S): Investigating the group-scale lenses with the SARCS sample , 2011, 1109.1821.

[50]  M. Rosenman,et al.  SUBMILLIMETER OBSERVATIONS OF MILLIMETER BRIGHT GALAXIES DISCOVERED BY THE SOUTH POLE TELESCOPE , 2012, 1206.4550.

[51]  Edward J. Wollack,et al.  THE ATACAMA COSMOLOGY TELESCOPE: ACT-CL J0102−4915 “EL GORDO,” A MASSIVE MERGING CLUSTER AT REDSHIFT 0.87 , 2011, 1109.0953.

[52]  J. Frieman,et al.  THE SERENDIPITOUS OBSERVATION OF A GRAVITATIONALLY LENSED GALAXY AT z = 0.9057 FROM THE BLANCO COSMOLOGY SURVEY: THE ELLIOT ARC , 2011, 1108.4681.

[53]  M. Oguri,et al.  GEMINI/GMOS SPECTROSCOPY OF 26 STRONG-LENSING-SELECTED GALAXY CLUSTER CORES , 2010, 1010.2714.

[54]  Adrian T. Lee,et al.  The 10 Meter South Pole Telescope , 2009, 0907.4445.

[55]  Jeffrey M. Kubo,et al.  THE SLOAN BRIGHT ARCS SURVEY: DISCOVERY OF SEVEN NEW STRONGLY LENSED GALAXIES FROM z = 0.66–2.94 , 2010, The Astrophysical Journal.

[56]  J. Kneib,et al.  Cosmological Constraints from Strong Gravitational Lensing in Clusters of Galaxies , 2010, Science.

[57]  Edward J. Wollack,et al.  THE ATACAMA COSMOLOGY TELESCOPE: PHYSICAL PROPERTIES AND PURITY OF A GALAXY CLUSTER SAMPLE SELECTED VIA THE SUNYAEV–ZEL'DOVICH EFFECT , 2010, The Astrophysical Journal.

[58]  L. Verde,et al.  SOUTHERN COSMOLOGY SURVEY. II. MASSIVE OPTICALLY SELECTED CLUSTERS FROM 70 SQUARE DEGREES OF THE SUNYAEV–ZEL'DOVICH EFFECT COMMON SURVEY AREA , 2010, 1002.2226.

[59]  Ucsb,et al.  Gravitationally lensed quasars and supernovae in future wide-field optical imaging surveys , 2010, 1001.2037.

[60]  European Southern Observatory,et al.  CASSOWARY 20: a wide separation Einstein Cross identified with the X-shooter spectrograph , 2009, Monthly Notices of the Royal Astronomical Society.

[61]  J. Frieman,et al.  THE SLOAN BRIGHT ARCS SURVEY: FOUR STRONGLY LENSED GALAXIES WITH REDSHIFT > 2 , 2009, 0910.4600.

[62]  Jiangang Hao,et al.  IMPROVEMENT OF THE RICHNESS ESTIMATES OF maxBCG CLUSTERS , 2009 .

[63]  A. Bolton,et al.  THE STRUCTURE AND DYNAMICS OF MASSIVE EARLY-TYPE GALAXIES: ON HOMOLOGY, ISOTHERMALITY, AND ISOTROPY INSIDE ONE EFFECTIVE RADIUS , 2009, 0906.1349.

[64]  D. Tucker,et al.  THE SLOAN BRIGHT ARCS SURVEY: SIX STRONGLY LENSED GALAXIES AT z = 0.4–1.4 , 2008, 0812.3934.

[65]  P. A. R. Ade,et al.  GALAXY CLUSTERS DISCOVERED WITH A SUNYAEV–ZEL'DOVICH EFFECT SURVEY , 2008, 0810.1578.

[66]  Jeffrey M. Kubo,et al.  DISCOVERY OF A VERY BRIGHT, STRONGLY LENSED z = 2 GALAXY IN THE SDSS DR5 , 2008, 0809.4475.

[67]  Cambridge,et al.  Two new large-separation gravitational lenses from SDSS , 2008, 0806.4188.

[68]  Y. Mellier,et al.  First Catalog of Strong Lens Candidates in the COSMOS Field , 2008, 0802.2174.

[69]  A. Bolton,et al.  The Sloan Lens ACS Survey. VI. Discovery and Analysis of a Double Einstein Ring , 2008, 0801.1555.

[70]  Jeffrey M. Kubo,et al.  A method to search for strong galaxy-galaxy lenses in optical imaging surveys , 2007, 0712.3063.

[71]  J. Frieman,et al.  Photometric Redshift Error Estimators , 2007, 0711.0962.

[72]  Huan Lin,et al.  A NEW SURVEY FOR GIANT ARCS , 2006, astro-ph/0610061.

[73]  Huan Lin,et al.  A Galaxy Photometric Redshift Catalog for the Sloan Digital Sky Survey Data Release 6 , 2007, 0708.0030.

[74]  J. Frieman,et al.  The 8 O’Clock Arc: A Serendipitous Discovery of a Strongly Lensed Lyman Break Galaxy in the SDSS DR4 Imaging Data , 2006, astro-ph/0611138.

[75]  G. Seidel,et al.  Arcfinder: an algorithm for the automatic detection of gravitational arcs , 2006, astro-ph/0607547.

[76]  M. Oguri The image separation distribution of strong lenses: halo versus subhalo populations , 2005, astro-ph/0508528.

[77]  Caltech,et al.  First Results on Shear-selected Clusters from the Deep Lens Survey: Optical Imaging, Spectroscopy, and X-Ray Follow-up , 2005, astro-ph/0507606.

[78]  Astrophysics,et al.  Gravitationally lensed high redshift galaxies in the field of 1E0657-56 , 2001, astro-ph/0109290.

[79]  R. Link,et al.  Cosmological Parameters from Multiple-Arc Gravitational Lensing Systems. I. Smooth Lensing Potentials , 1998, astro-ph/9802207.

[80]  K. Gebhardt,et al.  The Quadruple Gravitational Lens PG 1115+080: Time Delays and Models , 1996, astro-ph/9611051.

[81]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[82]  R. Blandford,et al.  Cosmological Applications of Gravitational Lensing , 1992 .

[83]  S. Refsdal On the possibility of determining Hubble's parameter and the masses of galaxies from the gravitational lens effect , 1964 .