Electrostatic fields in antibodies and antibody/antigen complexes.

[1]  M. L. Mason,et al.  Three‐dimensional structure of a fluorescein–Fab complex crystallized in 2‐methyl‐2,4‐pentanediol , 1989, Proteins.

[2]  M K Gilson,et al.  The dielectric constant of a folded protein , 1986, Biopolymers.

[3]  W. Kauzmann Some factors in the interpretation of protein denaturation. , 1959, Advances in protein chemistry.

[4]  G. Cohen,et al.  Structure of an antibody-antigen complex: crystal structure of the HyHEL-10 Fab-lysozyme complex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[5]  B. Honig,et al.  A rapid finite difference algorithm, utilizing successive over‐relaxation to solve the Poisson–Boltzmann equation , 1991 .

[6]  B. Conway Ionic Hydration in Chemistry and Biophysics , 1981 .

[7]  A. Plückthun,et al.  Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. , 1988, Science.

[8]  Anna Tempczyk,et al.  Electrostatic contributions to solvation energies: comparison of free energy perturbation and continuum calculations , 1991 .

[9]  B. Lee,et al.  The interpretation of protein structures: estimation of static accessibility. , 1971, Journal of molecular biology.

[10]  K. Sharp,et al.  Calculating the electrostatic potential of molecules in solution: Method and error assessment , 1988 .

[11]  S. Harrison,et al.  A structural taxonomy of DNA-binding domains , 1991, Nature.

[12]  B Honig,et al.  Computer simulations of the diffusion of a substrate to an active site of an enzyme. , 1987, Science.

[13]  L M Amzel,et al.  The three dimensional structure of a combining region-ligand complex of immunoglobulin NEW at 3.5-A resolution. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[14]  A. Adamson Physical chemistry of surfaces , 1960 .

[15]  D. Cram Cavitands: Organic Hosts with Enforced Cavities , 1983, Science.

[16]  T. Bhat,et al.  Crystallographic refinement of the three-dimensional structure of the FabD1.3-lysozyme complex at 2.5-A resolution. , 1991, The Journal of biological chemistry.

[17]  J Deisenhofer,et al.  Crystallographic refinement and atomic models of the intact immunoglobulin molecule Kol and its antigen-binding fragment at 3.0 A and 1.0 A resolution. , 1980, Journal of molecular biology.

[18]  Y. Satow,et al.  Phosphocholine binding immunoglobulin Fab McPC603. An X-ray diffraction study at 2.7 A. , 1985, Journal of molecular biology.

[19]  T. T. Wu,et al.  AN ANALYSIS OF THE SEQUENCES OF THE VARIABLE REGIONS OF BENCE JONES PROTEINS AND MYELOMA LIGHT CHAINS AND THEIR IMPLICATIONS FOR ANTIBODY COMPLEMENTARITY , 1970, The Journal of experimental medicine.

[20]  B C Finzel,et al.  Three-dimensional structure of an antibody-antigen complex. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[21]  G J Williams,et al.  The Protein Data Bank: a computer-based archival file for macromolecular structures. , 1977, Journal of molecular biology.

[22]  R. Bruccoleri,et al.  Protein antigenicity: a static surface property. , 1987, Immunology today.

[23]  D. Inbar,et al.  An active antibody fragment (Fv) composed of the variable portions of heavy and light chains. , 1973, Biochemistry.

[24]  A. Doig,et al.  Toward the semiquantitative estimation of binding constants guides for peptide peptide binding in aqueous solution , 1991 .

[25]  K. D. Hardman,et al.  Single-chain antigen-binding proteins. , 1988, Science.

[26]  R. Zauhar,et al.  A new method for computing the macromolecular electric potential. , 1985, Journal of molecular biology.

[27]  D A Agard,et al.  Computational method for the design of enzymes with altered substrate specificity. , 1991, Journal of molecular biology.

[28]  T. Bhat,et al.  The galactan‐binding immunoglobulin Fab J539: An x‐ray diffraction study at 2.6‐Å resolution , 1986, Proteins.

[29]  Kim A. Sharp,et al.  Incorporating solvent and ion screening into molecular dynamics using the finite‐difference Poisson–Boltzmann method , 1991 .

[30]  B Honig,et al.  Electrical potentials in trypsin isozymes. , 1989, Biochemistry.

[31]  E. Haber,et al.  Binding and structural diversity among high-affinity monoclonal anti-digoxin antibodies. , 1985, Molecular immunology.

[32]  R. Huber,et al.  Crystallographic structure studies of an IgG molecule and an Fc fragment , 1976, Nature.

[33]  C. Milstein,et al.  Continuous cultures of fused cells secreting antibody of predefined specificity , 1975, Nature.

[34]  C. Chothia,et al.  Orthogonal packing of beta-pleated sheets in proteins. , 1982, Biochemistry.

[35]  R. Bruccoleri,et al.  On the attribution of binding energy in antigen-antibody complexes McPC 603, D1.3, and HyHEL-5. , 1989, Biochemistry.

[36]  S. Harvey Treatment of electrostatic effects in macromolecular modeling , 1989, Proteins.

[37]  Robert Huber,et al.  Ligand binding: proteinase-protein inhibitor interactions , 1991 .

[38]  J. Novotný,et al.  Structural invariants of antigen binding: comparison of immunoglobulin VL-VH and VL-VL domain dimers. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Barry Honig,et al.  Focusing of electric fields in the active site of Cu‐Zn superoxide dismutase: Effects of ionic strength and amino‐acid modification , 1986, Proteins.

[40]  K. Sharp,et al.  Electrostatic interactions in macromolecules: theory and applications. , 1990, Annual review of biophysics and biophysical chemistry.

[41]  C. Chothia,et al.  Hydrophobic bonding and accessible surface area in proteins , 1974, Nature.

[42]  B Honig,et al.  Reconciling the magnitude of the microscopic and macroscopic hydrophobic effects. , 1991, Science.

[43]  R. Poljak,et al.  Three-dimensional structure of an antigen-antibody complex at 2.8 A resolution , 1986, Science.

[44]  M. Lascombe,et al.  Three-dimensional structure of antibodies. , 1988, Annual review of immunology.

[45]  J. A. McCammon,et al.  Solving the finite difference linearized Poisson‐Boltzmann equation: A comparison of relaxation and conjugate gradient methods , 1989 .

[46]  P. Kollman,et al.  An all atom force field for simulations of proteins and nucleic acids , 1986, Journal of computational chemistry.

[47]  C. Chothia,et al.  Domain association in immunoglobulin molecules. The packing of variable domains. , 1985, Journal of molecular biology.

[48]  L M Amzel,et al.  Preliminary refinement and structural analysis of the Fab fragment from human immunoglobulin new at 2.0 A resolution. , 1981, The Journal of biological chemistry.

[49]  G. Petsko,et al.  Three-dimensional structure of murine anti-p-azophenylarsonate Fab 36-71. 1. X-ray crystallography, site-directed mutagenesis, and modeling of the complex with hapten. , 1991, Biochemistry.

[50]  Barry Honig,et al.  Calculating total electrostatic energies with the nonlinear Poisson-Boltzmann equation , 1990 .

[51]  B Honig,et al.  Extracting hydrophobic free energies from experimental data: relationship to protein folding and theoretical models. , 1991, Biochemistry.

[52]  M. L. Connolly Solvent-accessible surfaces of proteins and nucleic acids. , 1983, Science.

[53]  M. Lewis,et al.  Calculation of the free energy of association for protein complexes , 1992, Protein science : a publication of the Protein Society.

[54]  E. Padlan,et al.  Antibody-antigen complexes. , 1988, Annual review of biochemistry.

[55]  S. Smith‐Gill,et al.  Experimental analysis by site-directed mutagenesis of somatic mutation effects on affinity and fine specificity in antibodies specific for lysozyme. , 1992, Journal of immunology.

[56]  T. N. Bhat,et al.  Small rearrangements in structures of Fv and Fab fragments of antibody D 1.3 on antigen binding , 1990, Nature.

[57]  R. Bruccoleri,et al.  Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[58]  G. Petsko,et al.  Three-dimensional structure of murine anti-p-azophenylarsonate Fab 36-71. 2. Structural basis of hapten binding and idiotypy. , 1991, Biochemistry.

[59]  C. Chothia,et al.  Structure of proteins: packing of alpha-helices and pleated sheets. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[60]  K. Sharp,et al.  Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons , 1991, Proteins.

[61]  M. Lascombe,et al.  Three-dimensional structure of Fab R19.9, a monoclonal murine antibody specific for the p-azobenzenearsonate group. , 1989, Proceedings of the National Academy of Sciences of the United States of America.