The Euclidean matching problem

We study the matching problem in finite dimensions. The Euclidean correlations of the distances can be taken into account in a systematic way. With respect to the case of independent random distances which we have studied before, the adjonction of Euclidean triangular correlations gives rise to corrections which vanish when the dimension of space goes to infinity, and remain relatively small in any dimensions Nous etudions le probleme du couplage («matching») en dimension finie. Les correlations euclidiennes entre les distances peuvent etre prises en compte de maniere systematique. Par rapport au cas des distances aleatoires independantes que nous avions etudiees precedemment, les correlations triangulaires euclidiennes engendrent des corrections qui s'annulent dans la limite ou la dimension de l'espace tend vers l'infini, et restent relativement petites a toute dimension

[1]  M. Mézard,et al.  A replica analysis of the travelling salesman problem , 1986 .

[2]  H. Orland Mean-field theory for optimization problems , 1985 .

[3]  K. Binder,et al.  Spin glasses: Experimental facts, theoretical concepts, and open questions , 1986 .

[4]  M. Mézard,et al.  Spin Glass Theory and Beyond , 1987 .

[5]  Giorgio Parisi,et al.  Order parameter for spin-glasses , 1983 .

[6]  M. Mézard,et al.  Replicas and optimization , 1985 .

[7]  János Komlós,et al.  On optimal matchings , 1984, Comb..

[8]  G. Hardy,et al.  Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work , 1978 .

[9]  S. Kirkpatrick,et al.  Solvable Model of a Spin-Glass , 1975 .

[10]  R. Palmer,et al.  Solution of 'Solvable model of a spin glass' , 1977 .

[11]  K. Adkins Theory of spin glasses , 1974 .

[12]  Giorgio Parisi,et al.  Mean-Field Equations for the Matching and the Travelling Salesman Problems , 1986 .

[13]  H. Whitney Non-Separable and Planar Graphs. , 1931, Proceedings of the National Academy of Sciences of the United States of America.

[14]  M. Mézard,et al.  On the statistical mechanics of optimization problems of the travelling salesman type , 1984 .

[15]  T. Plefka Convergence condition of the TAP equation for the infinite-ranged Ising spin glass model , 1982 .

[16]  L. Rogers,et al.  Diffusions, Markov Processes and Martingales - Vol 1: Foundations , 1979 .

[17]  J. Beardwood,et al.  The shortest path through many points , 1959, Mathematical Proceedings of the Cambridge Philosophical Society.

[18]  D. Thouless,et al.  Stability of the Sherrington-Kirkpatrick solution of a spin glass model , 1978 .

[19]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[20]  M. Mézard,et al.  On the solution of the random link matching problems , 1987 .

[21]  H. Kramers,et al.  Statistics of the Two-Dimensional Ferromagnet. Part II , 1941 .