Refuting Smoothed 3CNF Formulas

We introduce the following model for generating .semi-random 3CNF formulas. First, an adversary is allowed to pick an arbitrary formula with n varialdes and in clauses. Then, the formula is slightly perturbed at random. Namely, the smoothing operation leaves the variables of the formula unchanged, but flips the polarity of every variable occurrence in the formula independently with probability a. If the density m/n of a 3CNF formula exceeds a certain threshold value (say, 5epsiv-3) then the smoothing operation almost surely results in a non-satisfiable formula. We present a randomized polynomial time refutation algorithm that for every sufficiently dense 3CNF formula manages to refute most of its smoothed instantiations. The density requirement for our refutation algorithm is roughly epsiv-2 radic(n log log n), which almost matches the density Omega( radicn) required bv known algorithms for refuting 3CNF formulas that are completely random.

[1]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[2]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[3]  Erik D. Demaine,et al.  Logarithmic Lower Bounds in the Cell-Probe Model , 2005, SIAM J. Comput..

[4]  JOEL FRIEDMAN,et al.  Recognizing More Unsatisfiable Random k-SAT Instances Efficiently , 2005, SIAM J. Comput..

[5]  Greg N. Frederickson,et al.  Data Structures for On-Line Updating of Minimum Spanning Trees, with Applications , 1985, SIAM J. Comput..

[6]  Noga Alon,et al.  The Probabilistic Method, Second Edition , 2004 .

[7]  Mikkel Thorup,et al.  Oracles for distances avoiding a link-failure , 2002, SODA '02.

[8]  Noga Alon,et al.  Quadratic forms on graphs , 2005, STOC '05.

[9]  Subhash Suri,et al.  Vickrey prices and shortest paths: what is an edge worth? , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[10]  Dan Vilenchik,et al.  A local search algorithm for 3SAT , 2004 .

[11]  Robert E. Tarjan,et al.  A linear-time algorithm for a special case of disjoint set union , 1983, J. Comput. Syst. Sci..

[12]  Mikkel Thorup,et al.  Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity , 2001, JACM.

[13]  Michael Krivelevich,et al.  Efficient Recognition of Random Unsatisfiable k-SAT Instances by Spectral Methods , 2001, STACS.

[14]  Shang-Hua Teng,et al.  Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems , 2003, STOC '04.

[15]  Vijaya Ramachandran,et al.  Improved Distance Oracles for Avoiding Link-Failure , 2002, ISAAC.

[16]  Amin Coja-Oghlan,et al.  Strong Refutation Heuristics for Random k-SAT , 2004, APPROX-RANDOM.

[17]  Satish Rao,et al.  Expander flows, geometric embeddings and graph partitioning , 2004, STOC '04.

[18]  Joel H. Spencer,et al.  Coloring Random and Semi-Random k-Colorable Graphs , 1995, J. Algorithms.

[19]  Moses Charikar,et al.  Maximizing quadratic programs: extending Grothendieck's inequality , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[20]  Uri Zwick,et al.  Replacement Paths and k Simple Shortest Paths in Unweighted Directed Graphs , 2005, ICALP.

[21]  Jacques Verstraëte,et al.  Parity check matrices and product representations of squares , 2008, Comb..

[22]  Uriel Feige,et al.  Relations between average case complexity and approximation complexity , 2002, STOC '02.

[23]  Uriel Feige,et al.  Heuristics for Semirandom Graph Problems , 2001, J. Comput. Syst. Sci..

[24]  Uriel Feige,et al.  Easily Refutable Subformulas of Large Random 3CNF Formulas , 2004, ICALP.

[25]  David Eppstein,et al.  Sparsification—a technique for speeding up dynamic graph algorithms , 1997, JACM.

[26]  Robert E. Tarjan,et al.  Efficiency of a Good But Not Linear Set Union Algorithm , 1972, JACM.

[27]  Shang-Hua Teng,et al.  Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time , 2001, STOC '01.

[28]  Mikkel Thorup,et al.  Near-optimal fully-dynamic graph connectivity , 2000, STOC '00.

[29]  Valerie King,et al.  A fully dynamic algorithm for maintaining the transitive closure , 1999, STOC '99.

[30]  Frank Thomson Leighton,et al.  Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms , 1999, JACM.

[31]  Uriel Feige,et al.  Witnesses for non-satisfiability of dense random 3CNF formulas , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[32]  Noga Alon,et al.  Approximating the cut-norm via Grothendieck's inequality , 2004, STOC '04.