A High-Performance Transmitarray Antenna with Thin Metasurface for 5G Communication Based on PSO (Particle Swarm Optimization)

A 5G metasurface (MS) transmitarray (TA) feed by compact-antenna array with the performance of high gain and side-lobe level (SLL) reduction is presented. The proposed MS has two identical metallic layers etched on both sides of the dielectric substrate and four fixed vias connecting two metallic layers that works at 28 GHz to increase the transmission phase shift range. The proposed planar TA consisting of unit cells with different dimensional information can simulate the function as an optical lens according to the Fermat’s principle, so the quasi-spherical wave emitted by the compact Potter horn antenna at the virtual focal point will transform to the quasi-plane wave by the phase-adjustments. Then, the particle swarm optimization (PSO) is introduced to optimize the phase distribution on the TA to decrease the SLL further. It is found that the optimized TA could achieve 27 dB gain at 28 GHz, 11.8% 3 dB gain bandwidth, −30 dB SLL, and aperture efficiency of 23% at the operating bandwidth of 27.5–29.5 GHz, which performs better than the nonoptimized one. The advanced particularities of this optimized TA including low cost, low profile, and easy to configure make it great potential in paving the way to 5G communication and radar system.

[1]  Zaharah Johari,et al.  Reflectarray antenna performances using combination of rectangular and Jerusalem unit cells at 5.2 GHz , 2016, 2016 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE).

[2]  J. Anguera,et al.  High-Directivity Microstrip Patch Antennas Based on TModd-0 Modes , 2020, IEEE Antennas and Wireless Propagation Letters.

[3]  Theodore S. Rappaport,et al.  Millimeter Wave Mobile Communications for 5G Cellular: It Will Work! , 2013, IEEE Access.

[4]  Tong Cai,et al.  High-Efficiency Metasurface With Polarization-Dependent Transmission and Reflection Properties for Both Reflectarray and Transmitarray , 2018, IEEE Transactions on Antennas and Propagation.

[5]  Kyungwhoon Cheun,et al.  Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results , 2014, IEEE Communications Magazine.

[6]  P. Rezaei,et al.  High-Efficient Wideband Transmitarray Antenna , 2018, IEEE Antennas and Wireless Propagation Letters.

[7]  A. Morris,et al.  Compact Quad-Mode Planar Phased Array With Wideband for 5G Mobile Terminals , 2018, IEEE Transactions on Antennas and Propagation.

[8]  R. Fletcher Practical Methods of Optimization , 1988 .

[9]  R. Bansal,et al.  Antenna theory; analysis and design , 1984, Proceedings of the IEEE.

[10]  Fernando Las-Heras,et al.  A Simple Model for Analyzing Transmitarray Lenses , 2015, IEEE Antennas and Propagation Magazine.

[11]  Wang Yao,et al.  An X-band parabolic antenna based on gradient metasurface , 2016 .

[12]  Guangming Wang,et al.  X-Band Phase-Gradient Metasurface for High-Gain Lens Antenna Application , 2015, IEEE Transactions on Antennas and Propagation.

[13]  Y. Rahmat-Samii,et al.  Boundary Conditions in Particle Swarm Optimization Revisited , 2007, IEEE Transactions on Antennas and Propagation.

[14]  Y. Rahmat-Samii,et al.  Particle swarm optimization in electromagnetics , 2004, IEEE Transactions on Antennas and Propagation.

[15]  D. Pozar Flat lens antenna concept using aperture coupled microstrip patches , 1996 .

[16]  R. Pogorzelski,et al.  A Ka-band microstrip reflectarray with elements having variable rotation angles , 1998 .

[17]  Zengrui Li,et al.  Design of high-gain lens antenna based on phase-gradient metasurface , 2016, 2016 11th International Symposium on Antennas, Propagation and EM Theory (ISAPE).

[18]  Guangming Wang,et al.  Single-Layer Focusing Gradient Metasurface for Ultrathin Planar Lens Antenna Application , 2017, IEEE Transactions on Antennas and Propagation.

[19]  Rahim Tafazolli,et al.  Design of Phased Arrays of Series-Fed Patch Antennas With Reduced Number of the Controllers for 28-GHz mm-Wave Applications , 2016, IEEE Antennas and Wireless Propagation Letters.

[20]  M. Sierra-Castaner,et al.  Design of a 12 GHz transmit-array , 2007, 2007 IEEE Antennas and Propagation Society International Symposium.

[21]  Y. Rahmat-Samii,et al.  On Understanding the Radiation Mechanism of Reflectarray Antennas: An Insightful and Illustrative Approach , 2012, IEEE Antennas and Propagation Magazine.

[22]  Qi Luo,et al.  Wideband Transmitarray With Reduced Profile , 2018, IEEE Antennas and Wireless Propagation Letters.

[23]  Shiwen Yang,et al.  Ultrawideband Low-Profile Transmitarray With Vivaldi Array Feed , 2020, IEEE Transactions on Antennas and Propagation.

[24]  Gerhard P. Hancke,et al.  A Survey on 5G Networks for the Internet of Things: Communication Technologies and Challenges , 2018, IEEE Access.

[25]  M. R. Chaharmir,et al.  A Wideband Transmitarray Using Dual-Resonant Double Square Rings , 2010, IEEE Transactions on Antennas and Propagation.

[26]  Leo Liberti,et al.  Introduction to Global Optimization , 2006 .

[27]  Atef Z. Elsherbeni,et al.  Bandwidth Improvement Methods of Transmitarray Antennas , 2015, IEEE Transactions on Antennas and Propagation.

[28]  D.H. Werner,et al.  Particle swarm optimization versus genetic algorithms for phased array synthesis , 2004, IEEE Transactions on Antennas and Propagation.

[29]  Atef Z. Elsherbeni,et al.  Transmitarray Antenna Design Using Cross-Slot Elements With No Dielectric Substrate , 2014, IEEE Antennas and Wireless Propagation Letters.

[30]  Payam Nayeri,et al.  Analysis and Design of Transmitarray Antennas , 2017, Analysis and Design of Transmitarray Antennas.

[31]  H. Nakano,et al.  $2\times2$ Phased Array Consisting of Square Loop Antennas for High Gain Wide Angle Scanning With Low Grating Lobes , 2017, IEEE Transactions on Antennas and Propagation.

[32]  Maokun Li,et al.  A Double-Layer Transmitarray Antenna Using Malta Crosses With Vias , 2016, IEEE Transactions on Antennas and Propagation.

[33]  Guangli Yang,et al.  A Compact, Scanning Tightly Coupled Dipole Array With Parasitic Strips for Next-Generation Wireless Applications , 2018, IEEE Antennas and Wireless Propagation Letters.

[34]  Theodore S. Rappaport,et al.  28 GHz propagation measurements for outdoor cellular communications using steerable beam antennas in New York city , 2013, 2013 IEEE International Conference on Communications (ICC).

[35]  Randy L. Haupt,et al.  Thinned arrays using genetic algorithms , 1993, Proceedings of IEEE Antennas and Propagation Society International Symposium.

[36]  Atef Z. Elsherbeni,et al.  Design of Single-Feed Reflectarray Antennas With Asymmetric Multiple Beams Using the Particle Swarm Optimization Method , 2013, IEEE Transactions on Antennas and Propagation.

[37]  F. Behnia,et al.  Design of Broadband Constant-Beamwidth Conical Corrugated-Horn Antennas [Antenna Designer's Notebook] , 2009, IEEE Antennas and Propagation Magazine.

[38]  J. E. Page,et al.  Design of Broadband Transmitarray Unit Cells With Comparative Study of Different Numbers of Layers , 2015, IEEE Transactions on Antennas and Propagation.

[39]  Zhi Ning Chen,et al.  Metamaterial-Based Thin Planar Lens Antenna for Spatial Beamforming and Multibeam Massive MIMO , 2017, IEEE Transactions on Antennas and Propagation.

[40]  Fan Yang,et al.  A Metal-Only Reflectarray Antenna Using Slot-Type Elements , 2014, IEEE Antennas and Wireless Propagation Letters.