Robust and stable gene selection via Maximum-Minimum Correntropy Criterion.

[1]  Jim Jing-Yan Wang,et al.  Regularized maximum correntropy machine , 2015, Neurocomputing.

[2]  P. Stafford,et al.  Time-Frequency Analysis of Peptide Microarray Data: Application to Brain Cancer Immunosignatures , 2015, Cancer informatics.

[3]  Caleb Webber,et al.  GeneNet Toolbox for MATLAB: a flexible platform for the analysis of gene connectivity in biological networks , 2014, Bioinform..

[4]  Ion I. Mandoiu,et al.  Feature selection and classifier performance on diverse bio- logical datasets , 2014, BMC Bioinformatics.

[5]  Verónica Bolón-Canedo,et al.  A review of microarray datasets and applied feature selection methods , 2014, Inf. Sci..

[6]  John Quackenbush,et al.  Inference and validation of predictive gene networks from biomedical literature and gene expression data. , 2014, Genomics.

[7]  Mohammad Hossein Moattar,et al.  Robust and stable feature selection by integrating ranking methods and wrapper technique in genetic data classification. , 2014, Biochemical and biophysical research communications.

[8]  U ManChon,et al.  Prediction and Prioritization of Rare Oncogenic Mutations in the Cancer Kinome Using Novel Features and Multiple Classifiers , 2014, PLoS Comput. Biol..

[9]  Kouros Owzar,et al.  Supplementary Issue: Array Platform Modeling and Analysis (b) next Generation Distributed Computing for Cancer Research Scalable Computing Systems , 2022 .

[10]  Guoqing Wang,et al.  Gene expression profile based classification models of psoriasis. , 2014, Genomics.

[11]  Neil M. Ferguson,et al.  Feature Selection Methods for Identifying Genetic Determinants of Host Species in RNA Viruses , 2013, PLoS Comput. Biol..

[12]  Sohail Asghar,et al.  A REVIEW OF FEATURE SELECTION TECHNIQUES IN STRUCTURE LEARNING , 2013 .

[13]  Thomas Lengauer,et al.  Analysis of Physicochemical and Structural Properties Determining HIV-1 Coreceptor Usage , 2013, PLoS Comput. Biol..

[14]  Jörg Fliege,et al.  Machine learning approaches for the discovery of gene-gene interactions in disease data , 2013, Briefings Bioinform..

[15]  René Vidal,et al.  Sparse Subspace Clustering: Algorithm, Theory, and Applications , 2012, IEEE transactions on pattern analysis and machine intelligence.

[16]  Xibei Yang,et al.  Interval-valued analysis for discriminative gene selection and tissue sample classification using microarray data. , 2013, Genomics.

[17]  R. Vidal,et al.  Sparse Subspace Clustering: Algorithm, Theory, and Applications. , 2013, IEEE transactions on pattern analysis and machine intelligence.

[18]  Xiaolei Wang,et al.  Non-negative matrix factorization by maximizing correntropy for cancer clustering , 2013, BMC Bioinformatics.

[19]  Keun Ho Ryu,et al.  An ensemble correlation-based gene selection algorithm for cancer classification with gene expression data , 2012, Bioinform..

[20]  Hugues Bersini,et al.  A Survey on Filter Techniques for Feature Selection in Gene Expression Microarray Analysis , 2012, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[21]  M. Lai,et al.  SVM-T-RFE: a novel gene selection algorithm for identifying metastasis-related genes in colorectal cancer using gene expression profiles. , 2012, Biochemical and biophysical research communications.

[22]  Gavin Brown,et al.  Conditional Likelihood Maximisation: A Unifying Framework for Information Theoretic Feature Selection , 2012, J. Mach. Learn. Res..

[23]  Tatyana O. Sharpee,et al.  Second Order Dimensionality Reduction Using Minimum and Maximum Mutual Information Models , 2011, PLoS Comput. Biol..

[24]  Ran He,et al.  Maximum Correntropy Criterion for Robust Face Recognition , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[26]  Benjamin A. Logsdon,et al.  Gene Expression Network Reconstruction by Convex Feature Selection when Incorporating Genetic Perturbations , 2010, PLoS Comput. Biol..

[27]  Jana Novovicová,et al.  Evaluating Stability and Comparing Output of Feature Selectors that Optimize Feature Subset Cardinality , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Jose C. Principe,et al.  Information Theoretic Learning - Renyi's Entropy and Kernel Perspectives , 2010, Information Theoretic Learning.

[29]  Jin-Kao Hao,et al.  Advances in metaheuristics for gene selection and classification of microarray data , 2010, Briefings Bioinform..

[30]  Gunnar Rätsch,et al.  Support Vector Machines and Kernels for Computational Biology , 2008, PLoS Comput. Biol..

[31]  Jian Huang,et al.  Penalized feature selection and classification in bioinformatics , 2008, Briefings Bioinform..

[32]  Gary B. Fogel,et al.  Computational intelligence approaches for pattern discovery in biological systems , 2008, Briefings Bioinform..

[33]  Weifeng Liu,et al.  Correntropy: Properties and Applications in Non-Gaussian Signal Processing , 2007, IEEE Transactions on Signal Processing.

[34]  Le Song,et al.  Gene selection via the BAHSIC family of algorithms , 2007, ISMB/ECCB.

[35]  Sorin Draghici,et al.  Machine Learning and Its Applications to Biology , 2007, PLoS Comput. Biol..

[36]  Janez Brest,et al.  Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems , 2006, IEEE Transactions on Evolutionary Computation.

[37]  Gavin C. Cawley,et al.  Gene Selection in Cancer Classification using Sparse Logistic Regression with Bayesian Regularisation , 2006 .

[38]  José Carlos Príncipe,et al.  Generalized correlation function: definition, properties, and application to blind equalization , 2006, IEEE Transactions on Signal Processing.

[39]  Concha Bielza,et al.  Machine Learning in Bioinformatics , 2008, Encyclopedia of Database Systems.

[40]  Xiaodong Lin,et al.  Gene expression Gene selection using support vector machines with non-convex penalty , 2005 .

[41]  Fuhui Long,et al.  Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy , 2003, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[42]  Robert P. W. Duin,et al.  STATISTICAL PATTERN RECOGNITION , 2005 .

[43]  F. Fleuret Fast Binary Feature Selection with Conditional Mutual Information , 2004, J. Mach. Learn. Res..

[44]  Tao Li,et al.  A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression , 2004, Bioinform..

[45]  Danh V. Nguyen,et al.  Multi-class cancer classification via partial least squares with gene expression profiles , 2002, Bioinform..

[46]  P. Cunningham,et al.  Solutions to Instability Problems with Sequential Wrapper-based Approaches to Feature Selection , 2002 .

[47]  Fabian Model,et al.  Feature selection for DNA methylation based cancer classification , 2001, ISMB.

[48]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[49]  John E. Moody,et al.  Data Visualization and Feature Selection: New Algorithms for Nongaussian Data , 1999, NIPS.

[50]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[51]  David D. Lewis,et al.  Feature Selection and Feature Extraction for Text Categorization , 1992, HLT.