Ground Moving Targets Imaging Algorithm for Synthetic Aperture Radar

It is well known that the motion of a target induces range migration, especially for high-resolution synthetic aperture radar (SAR) systems. Ground moving target imaging necessitates the correction of the unknown range migration. To finely refocus a moving target, one must accurately obtain the motion parameters for compensating the target trajectory. However, in practice, these parameters usually cannot be precisely estimated. This paper proposes a new imaging approach for ground moving targets without a priori knowledge of their motion parameters. In the devised method, the azimuth compression function is constructed in range frequency domain, which can eliminate the coupling effect between range and azimuth. Theoretical analysis confirms that the methodology can precisely focus targets without interpolation procedure. The effectiveness of the proposed imaging technique is demonstrated by both simulated and real airborne SAR data.

[1]  R. Keith Raney,et al.  Precision SAR processing using chirp scaling , 1994, IEEE Trans. Geosci. Remote. Sens..

[2]  Shu Li,et al.  Improved slope estimation for SAR Doppler ambiguity resolution , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[3]  Sergio Barbarossa,et al.  Detection and imaging of moving objects with synthetic aperture radar. Part 2: Joint time-frequency analysis by Wigner-Ville distribution , 1992 .

[4]  Ian G. Cumming,et al.  Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation , 2005 .

[5]  James Ward,et al.  Space-time adaptive processing for airborne radar , 1998 .

[6]  C. H. Gierull Azimuth positioning of moving targets in two-channel SAR by direction-of-arrival estimation , 2004 .

[7]  Erich Meier,et al.  Capabilities of Dual-Frequency Millimeter Wave SAR With Monopulse Processing for Ground Moving Target Indication , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[8]  Pierfrancesco Lombardo Estimation of target motion parameters from dual-channel SAR echoes via time-frequency analysis , 1997, Proceedings of the 1997 IEEE National Radar Conference.

[9]  Sergio Barbarossa,et al.  Space-time-frequency processing of synthetic aperture radar signals , 1994 .

[10]  H.S.C. Wang Mainlobe clutter cancellation by DPCA for space-based radars , 1991, 1991 IEEE Aerospace Applications Conference Digest.

[11]  Charles V. Jakowatz,et al.  Phase gradient autofocus-a robust tool for high resolution SAR phase correction , 1994 .

[12]  Sergio Barbarossa New autofocusing technique for SAR images based on the Wigner-ville distribution , 1990 .

[13]  J.H.G. Ender Space-time processing for multichannel synthetic aperture radar , 1999 .

[14]  Xiang-Gen Xia,et al.  Dual-speed SAR imaging of moving targets , 1999, Proceedings of the 1999 IEEE Radar Conference. Radar into the Next Millennium (Cat. No.99CH36249).

[15]  Richard Bamler,et al.  PRF-ambiguity resolving by wavelength diversity , 1991, IEEE Trans. Geosci. Remote. Sens..

[16]  Michael Jin Optimal Doppler Centroid Estimation for SAR Data from a Quasi-Homogeneous Source , 1986, IEEE Transactions on Geoscience and Remote Sensing.

[17]  R. P. Perry,et al.  SAR imaging of moving targets , 1999 .

[18]  John C. Curlander,et al.  Synthetic Aperture Radar: Systems and Signal Processing , 1991 .

[19]  P. Marques,et al.  Velocity estimation of fast moving targets using a single SAR sensor , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[20]  Anna Scaglione,et al.  Autofocusing of SAR images based on the product high-order ambiguity function , 1998 .

[21]  Richard Klemm,et al.  Introduction to space-time adaptive processing , 1998 .

[22]  Søren Nørvang Madsen,et al.  Estimating the Doppler centroid of SAR data , 1989 .

[23]  Christoph H. Gierull,et al.  The influence of target acceleration on velocity estimation in dual-channel SAR-GMTI , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[24]  Alexander M. Haimovich,et al.  Reduced-rank STAP performance analysis , 2000, IEEE Trans. Aerosp. Electron. Syst..

[25]  José M. Bioucas-Dias,et al.  Imaging of fast moving targets using undersampled SAR raw-data , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[26]  C. Gierull,et al.  Compensating the effects of target acceleration in dual-channel SAR-GMTI , 2006 .

[27]  P. Marques,et al.  Moving Targets Processing in SAR Spatial Domain , 2007, IEEE Transactions on Aerospace and Electronic Systems.

[28]  Ian G. Cumming,et al.  A combined SAR Doppler centroid estimation scheme based upon signal phase , 1996, IEEE Trans. Geosci. Remote. Sens..

[29]  Mehrdad Soumekh,et al.  SAR moving target detection and identification using stochastic gradient techniques , 1995, 1995 International Conference on Acoustics, Speech, and Signal Processing.

[30]  Xiang-Gen Xia,et al.  Radar imaging of moving targets in foliage using multifrequency multiaperture polarimetric SAR , 2003, IEEE Trans. Geosci. Remote. Sens..

[31]  Guisheng Liao,et al.  A New Slant-Range Velocity Ambiguity Resolving Approach of Fast Moving Targets for SAR System , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[32]  J.M.B. Dias,et al.  Multiple moving target detection and trajectory estimation using a single SAR sensor , 2003 .

[33]  A. Currie,et al.  Synthetic aperture radar (SAR) images of moving targets , 1987 .

[34]  Richard Bamler,et al.  A comparison of range-Doppler and wavenumber domain SAR focusing algorithms , 1992, IEEE Trans. Geosci. Remote. Sens..

[35]  Shu Li,et al.  Adding Sensitivity to the MLBF Doppler Centroid Estimator , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[36]  J.M.B. Dias,et al.  Velocity estimation of fast moving targets using undersampled SAR raw-data , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[37]  Christoph H. Gierull,et al.  Improved Space-Based Moving Target Indication via Alternate Transmission and Receiver Switching , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[38]  Jen King Jao,et al.  Theory of synthetic aperture radar imaging of a moving target , 2001, IEEE Trans. Geosci. Remote. Sens..

[39]  Delphine Cerutti-Maori,et al.  Wide-Area Traffic Monitoring With the SAR/GMTI System PAMIR , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[40]  Young-Kyun Kong,et al.  Ambiguity-free Doppler centroid estimation technique for airborne SAR using the Radon transform , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[41]  Fuk K. Li,et al.  Doppler Parameter Estimation for Spaceborne Synthetic-Aperture Radars , 1985, IEEE Transactions on Geoscience and Remote Sensing.

[42]  Marco Schwerdt,et al.  An Efficient Method for Performance Monitoring of Active Phased Array Antennas , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[43]  P. Marques,et al.  MOVING TARGETS VELOCITY ESTIMATION USING ALIASED SAR RAW-DATA FROM A SINGLE SENSOR 1 , 2002 .

[44]  J. Fienup Detecting moving targets in SAR imagery by focusing , 2001 .

[45]  Guisheng Liao,et al.  New Approach for SAR Doppler Ambiguity Resolution in Compressed Range Time and Scaled Azimuth Time Domain , 2011, IEEE Transactions on Aerospace and Electronic Systems.

[46]  R.C. DiPietro,et al.  Extended factored space-time processing for airborne radar systems , 1992, [1992] Conference Record of the Twenty-Sixth Asilomar Conference on Signals, Systems & Computers.

[47]  Marco Schwerdt,et al.  TerraSAR-X Instrument Calibration Results and Extension for TanDEM-X , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[48]  S.A.S. Werness,et al.  Moving target imaging algorithm for SAR data , 1990 .

[49]  Daiyin Zhu,et al.  A Keystone Transform Without Interpolation for SAR Ground Moving-Target Imaging , 2007, IEEE Geoscience and Remote Sensing Letters.

[50]  Renbiao Wu,et al.  Approach for single channel SAR ground moving target imaging and motion parameter estimation , 2007 .