Mechanics and Thermodynamics of Biomembranes

One of the most exciting and rapidly growing areas of research in cell biology today is the structure and function (mechanical and chemical) of cell membranes. Numerous review articles and texts have appeared in the past ten years on the ultrastructure and transport function of biomembranes, but there has been no unifying text outlining the new developments in the continuum mechanics of biomembranes in this same period. This book by Drs. Evans and Skalak is a very welcome and much needed addition to the field. It provides at the same time an excellent tutorial introduction for engineering and physical scientists interested in a continuum mechanical and thermodynamic description of biomembrane systems and a valuable reference text for advanced researchers in the field. Two particular strengths of the presentation are that it ties together the mechanical concepts of deformation, rate of deformation and force resultants with thermodynamic concepts that provide constitutive relations for the material properties of membranes and then relates this theoretical framework to an impressive array of biological membrane experiments that are described in some detail in the last third of the book.

[1]  Jonas Gloeckner,et al.  Introduction To Mechanics Of Continua , 2016 .

[2]  R. Hochmuth,et al.  A solid-liquid composite model of the red cell membrane , 1976, The Journal of Membrane Biology.

[3]  W. Seifriz The physical properties of erythrocytes , 1926, Protoplasma.

[4]  The tension at the surface, and other physical properties of the nucleated erythrocyte , 2005, Protoplasma.

[5]  K. Cole Surface forces of the Arbacia egg , 1932, Protoplasma.

[6]  B. A. Pethica,et al.  Phospholipid monolayers at non-polar oil/water interfaces. Part 3.—Effect of chain length on phase transitions in saturated di-acyl lecithins at the n-heptane/aqueous sodium chloride interface , 1982 .

[7]  E. Evans Minimum energy analysis of membrane deformation applied to pipet aspiration and surface adhesion of red blood cells. , 1980, Biophysical journal.

[8]  R. Waugh,et al.  Osmotic correction to elastic area compressibility measurements on red cell membrane. , 1977, Biophysical journal.

[9]  K. Jacobson,et al.  Lateral diffusion in phospholipid multibilayers measured by fluorescence recovery after photobleaching. , 1977, Biochemistry.

[10]  R. L. Kay,et al.  Redetermination of the pressure dependence of the lipid bilayer phase transition. , 1977, Biochemistry.

[11]  R. Waugh,et al.  Mechano-chemistry of closed, vesicular membrane systems , 1977 .

[12]  R. Rand,et al.  Measurement and modification of forces between lecithin bilayers. , 1977, Biophysical journal.

[13]  D. Branton,et al.  Selective association of spectrin with the cytoplasmic surface of human erythrocyte plasma membranes. Quantitative determination with purified (32P)spectrin. , 1977, The Journal of biological chemistry.

[14]  S Chien,et al.  Elastic deformations of red blood cells. , 1977, Journal of biomechanics.

[15]  R. Waugh,et al.  Viscoelastic properties of erythrocyte membranes of different vertebrate animals. , 1976, Microvascular research.

[16]  W. Helfrich,et al.  Red blood cell shapes as explained on the basis of curvature elasticity. , 1976, Biophysical journal.

[17]  W. Helfrich,et al.  Measurement of the curvature-elastic modulus of egg lecithin bilayers. , 1976, Biochimica et biophysica acta.

[18]  R. Waugh,et al.  Elastic area compressibility modulus of red cell membrane. , 1976, Biophysical journal.

[19]  R. Hochmuth,et al.  Viscosity of human red cell membrane in plastic flow. , 1976, Microvascular research.

[20]  P. Saffman Brownian motion in thin sheets of viscous fluid , 1976, Journal of Fluid Mechanics.

[21]  A. Katchalsky,et al.  RHEOLOGICAL CONSIDERATIONS OF THE HAEMOLYSING RED BLOOD CELL , 1976 .

[22]  E. Evans,et al.  Mechanics of electrocompression of lipid bilayer membranes. , 1975, Biophysical journal.

[23]  S. Chien,et al.  Chapter 26 – Biophysical Behavior of Red Cells in Suspensions , 1975 .

[24]  Letter: Lenses and the compression of black lipid membranes by an electric field. , 1975, Biophysical journal.

[25]  E. Evans,et al.  Intrinsic material properties of the erythrocyte membrane indicated by mechanical analysis of deformation. , 1975, Blood.

[26]  E. Evans,et al.  Bending resistance and chemically induced moments in membrane bilayers. , 1974, Biophysical journal.

[27]  D. Branton,et al.  Trypsin Digestion of Intact RBCs , 2003 .

[28]  Charles Tanford,et al.  Theory of micelle formation in aqueous solutions , 1974 .

[29]  W. Helfrich Blocked Lipid Exchange in Bilayers and its Possible Influence on the Shape of Vesicles , 1974, Zeitschrift fur Naturforschung. Section C, Biosciences.

[30]  C. Tanford,et al.  Empirical correlation between hydrophobic free energy and aqueous cavity surface area. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[31]  S. White Letter: Comments on "electrical breakdown of bimolecular lipid membranes as an electromechanical instability". , 1974, Biophysical journal.

[32]  S J Singer,et al.  The molecular organization of membranes. , 1974, Annual review of biochemistry.

[33]  W. Helfrich Elastic Properties of Lipid Bilayers: Theory and Possible Experiments , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.

[34]  E. Evans A new material concept for the red cell membrane. , 1973, Biophysical journal.

[35]  E. Evans,et al.  New membrane concept applied to the analysis of fluid shear- and micropipette-deformed red blood cells. , 1973, Biophysical journal.

[36]  E. Evans,et al.  Geometric properties of individual red blood cell discocyte-spherocyte transformations. , 1973, Biorheology.

[37]  R M Hochmuth,et al.  Measurement of the elastic modulus for red cell membrane using a fluid mechanical technique. , 1973, Biophysical journal.

[38]  R. Skalak Modelling the mechanical behavior of red blood cells. , 1973, Biorheology.

[39]  R. Skalak,et al.  Strain energy function of red blood cell membranes. , 1973, Biophysical journal.

[40]  P. M. Naghdi,et al.  The Theory of Shells and Plates , 1973 .

[41]  K. Dan,et al.  Tension at the surface of the dividing sea-urchin egg. , 1972, The Journal of experimental biology.

[42]  Y. C. Fung,et al.  Improved measurements of the erythrocyte geometry. , 1972, Microvascular research.

[43]  H. S. Lew Electro-tension and torque in biological membranes modeled as a dipole sheet in fluid conductors. , 1972, Journal of Biomechanics.

[44]  P. Leblond The discocyte-echinocyte transformation of the human red cell: deformability characteristics. , 1972, Nouvelle revue francaise d'hematologie.

[45]  S. Singer,et al.  The fluid mosaic model of the structure of cell membranes. , 1972, Science.

[46]  C. Tanford,et al.  The solubility of amino acids and two glycine peptides in aqueous ethanol and dioxane solutions. Establishment of a hydrophobicity scale. , 1971, The Journal of biological chemistry.

[47]  S. White A study of lipid bilayer membrane stability using precise measurements of specific capacitance. , 1970, Biophysical journal.

[48]  R. Hochmuth,et al.  Measurement of Red Cell Modulus of Elasticity by in-Vitro and Model Cell Experiments , 1970 .

[49]  P. Canham,et al.  The area and volume of single human erythrocytes during gradual osmotic swelling to hemolysis. , 1970, Canadian journal of physiology and pharmacology.

[50]  V. Marchesi,et al.  Physical and chemical properties of a protein isolated from red cell membranes. , 1970, Biochemistry.

[51]  Y. Hiramoto,et al.  Rheological properties of sea urchin eggs. , 1970, Biorheology.

[52]  P. Lacelle Alteration of membrane deformability in hemolytic anemias. , 1970, Seminars in hematology.

[53]  P. Canham The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. , 1970, Journal of theoretical biology.

[54]  R. Wells,et al.  Fluid Drop-Like Transition of Erythrocytes under Shear , 1969, Science.

[55]  P. L. la Celle,et al.  Alteration of deformability of the erythrocyte membrane in stored blood. , 1969, Transfusion.

[56]  Y C Fung,et al.  Theory of the sphering of red blood cells. , 1968, Biophysical journal.

[57]  F. Reiss-Husson Structure des phases liquide-cristallines de différents phospholipides, monoglycérides, sphingolipides, anhydres ou en présence d'eau , 1967 .

[58]  G. Gaines,et al.  Insoluble Monolayers at Liquid-gas Interfaces , 1966 .

[59]  Ilya Prigogine,et al.  Surface tension and adsorption , 1966 .

[60]  Y C Fung,et al.  Theoretical considerations of the elasticity of red cells and small blood vessels. , 1966, Federation proceedings.

[61]  M. Yoneda TENSION AT THE SURFACE OF SEA-URCHIN EGG: A CRITICAL EXAMINATION OF COLE'S EXPERIMENT. , 1964, The Journal of experimental biology.

[62]  R. Rand,et al.  MECHANICAL PROPERTIES OF THE RED CELL MEMBRANE. II. VISCOELASTIC BREAKDOWN OF THE MEMBRANE. , 1964, Biophysical journal.

[63]  A C BURTON,et al.  MECHANICAL PROPERTIES OF THE RED CELL MEMBRANE. I. MEMBRANE STIFFNESS AND INTRACELLULAR PRESSURE. , 1964, Biophysical journal.

[64]  Y. Hiramoto,et al.  MECHANICAL PROPERTIES OF SEA URCHIN EGGS. I. SURFACE FORCE AND ELASTIC MODULUS OF THE CELL MEMBRANE. , 1963, Experimental cell research.

[65]  Y. Hiramoto MECHANICAL PROPERTIES OF SEA URCHIN EGGS. II. CHANGES IN MECHANICAL PROPERTIES FROM FERTILIZATION TO CLEAVAGE. , 1963, Experimental cell research.

[66]  L. Deenen,et al.  MONOMOLECULAR LAYERS OF SYNTHETIC PHOSPHATIDES * , 1962, The Journal of pharmacy and pharmacology.

[67]  M. A. Jaswon Large Elastic Deformations , 1962, Nature.

[68]  P. Elworthy 1061. The adsorption of water vapour by lecithin and lysolecithin, and the hydration of lysolecithin micelles , 1961 .

[69]  P. M. Naghdi,et al.  ON THE THEORY OF THIN ELASTIC SHELLS , 1957 .

[70]  J. Mitchison,et al.  The Mechanical Properties of the Cell Surface I. The Cell Elastimeter , 1954 .

[71]  W. Prager,et al.  Reissner Anniversary Volume: Contributions to Applied Mechanics. , 1950 .

[72]  E. Rideal The Physics and Chemistry of Surfaces , 1931, Nature.

[73]  L. Onsager Reciprocal Relations in Irreversible Processes. II. , 1931 .