MODELING IN THE SYSTEM OF ADAPTATION AND SPORT TRAINING MANAGEMENT
暂无分享,去创建一个
Aim is to design a modeling process for multifunctional adaptive phase phenomena in management and support of sport training technologies. The relevance of research issues from the necessity of the stated monitoring. The main point is the design and prediction of the sport training technology based on aggregate model characteristics of multifunctional state, physical working capacity, and sport fitness. The stated problem implies an essential aspect of individualized sport training. The design of sport training technologies requires scientific justification and support of the modernized loads and technologies for recovery process acceleration. We used vast theoretical material with modern approaches based on multifunctional and methabolic study of the body by means of modern technologies (Schiller, Oxycon Mobile, non-invasive diagnostic equipment, body composition analyzer, stabilometer, 3D-scanner). Methods and Organization. We used theoretical analysis including the intellectual one, mathematical extrapolation method, and diagnostic methods. We performed retrospective analysis of adaptation to modeling processes within the sport training system. Theoretical Analysis Results and Discussion. The conducted study revealed that the structure of mastery in highly-skilled athletes was expressed in variable and stable indices the integrative action of which is associated with sport performance. Variable indices reflect the level of motor qualities and skills in non-specific manifestation, characteristics of local functions of certain elements in main anatomical and physiological systems, leucogram composition, and components of immune status, metabolism, and mental status. Conclusion. Preliminary study conducted in the Research Center of Sport Science has shown that the material processing should involve computer technologies and a system of intellectual analysis of physiological data. We performed the spectral analysis of the blood flow allowing timely correction of regulatory processes in the whole body based on flatland and mountain training model.