Vorticity intensification and transition to turbulence in three-dimensional euler equations

The evolution of a perturbed vortex tube is studied by means of a second-order projection method for the incompressible Euler equations. We observe, to the limits of grid resolution, a nonintegrable blowup in vorticity. The onset of the intensification is accompanied by a decay in the mean kinetic energy. Locally, the intensification is characterized by tightly curved regions of alternating-sign vorticity in a 2n-pole structure. After the firstL∞ peak, the enstrophy and entropy continue to increase, and we observe reconnection events, continued decay of the mean kinetic energy, and the emergence of a Kolmogorov (k−5/3) range in the energy spectrum.

[1]  G. Batchelor,et al.  Decay of vorticity in isotropic turbulence , 1947, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[2]  A. Chorin Turbulence and vortex stretching on a lattice , 1986 .

[3]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[4]  A. Chorin,et al.  Vortex equilibria in turbulence theory and quantum analogues , 1991 .

[5]  P. Gennes Scaling Concepts in Polymer Physics , 1979 .

[6]  Eric D. Siggia,et al.  Collapse and amplification of a vortex filament , 1985 .

[7]  E. Siggia,et al.  Collapsing solutions to the 3‐D Euler equations , 1990 .

[8]  F. Hussain,et al.  Simulation of vortex reconnection , 1989 .

[9]  Ashurst,et al.  Numerical study of vortex reconnection. , 1987, Physical review letters.

[10]  R. E. Falco,et al.  Coherent motions in the outer region of turbulent boundary layers , 1977 .

[11]  The evolution of a turbulent vortex , 1982 .

[12]  P. Moin A Note on the Structure of Turbulent Shear Flows , 1985 .

[13]  P. Colella,et al.  A second-order projection method for the incompressible navier-stokes equations , 1989 .

[14]  P. Colella Multidimensional upwind methods for hyperbolic conservation laws , 1990 .

[15]  Alain Pumir,et al.  Vortex dynamics and the existence of solutions to the Navier–Stokes equations , 1987 .

[16]  Alexandre J. Chorin,et al.  Hairpin Removal in Vortex Interactions II , 1990 .

[17]  S. Orszag,et al.  Small-scale structure of the Taylor–Green vortex , 1983, Journal of Fluid Mechanics.

[18]  J. Gani,et al.  Statistical Models and Turbulence. , 1972 .

[19]  Kerr,et al.  Numerical simulation of interacting vortex tubes. , 1987, Physical review letters.

[20]  P. Moin,et al.  Evolution of a curved vortex filament into a vortex ring , 1986 .

[21]  Tosio Kato,et al.  Remarks on the breakdown of smooth solutions for the 3-D Euler equations , 1984 .

[22]  Parviz Moin,et al.  The structure of the vorticity field in turbulent channel flow. Part 2. Study of ensemble-averaged fields , 1984, Journal of Fluid Mechanics.

[23]  Norman J. Zabusky,et al.  Three-dimensional vortex tube reconnection: morphology for orthogonally-offset tubes , 1989 .

[24]  John B. Bell,et al.  A Second-Order Projection Method for the Incompressible Navier Stokes Equations on Quadrilateral Grids , 1989 .