Oxygen levels in the prebiological atmosphere

A photochemical model of the early terrestrial atmosphere is used to find oxygen profiles as a function of the hydrogen and carbon monoxide outgassing rates from volcanoes and the rate of oxidation of the earth's crust. Steady state solutions for the amount of O2 in the atmosphere are possible only when the combined loss rate from all three processes can balance the production of oxygen from photodissociation of H2O, followed by escape of hydrogen to space. If limiting flux controls the escape rate, then the production rate of oxygen atoms depends linearly upon the water vapor mixing ratio at the tropopause. Evidence is presented which indicates that the hydrogen outgassing alone was sufficient to overwhelm the production of oxygen, leading to ground level O2 mixing ratios of the order of 10−12 times the present atmospheric level (PAL) or below. The O2 mixing ratio increases rapidly with altitude up to a peak of 10−5 PAL at 60 km owing to the presence of CO2. Present-day concentrations of N2, CO2, and H2O are assumed in the calculation. The effect of possible temperature variations upon the H2O content is discussed.

[1]  L. C. Marshall,et al.  Limitation on Oxygen Concentration in a Primitive Planetary Atmosphere , 1966 .

[2]  D. D. Drysdale,et al.  Evaluated kinetic data for high temperature reactions , 1972 .

[3]  Michael B. McElroy,et al.  Stability of the Martian Atmosphere , 1972, Science.

[4]  W. Demore,et al.  Primary processes in ozone photolysis. , 1966 .

[5]  F. Fehsenfeld,et al.  Thermal Energy Ion—Neutral Reaction Rates. II. Some Reactions of Ionospheric Interest , 1966 .

[6]  M. Mendillo,et al.  Evolution of the atmosphere , 1977 .

[7]  F. Fehsenfeld,et al.  Thermal‐Energy Ion—Neutral Reaction Rates. III. The Measured Rate Constant for the Reaction O+(4S)+CO2(1Σ)→O2+( 2Π)+CO(1Σ) , 1966 .

[8]  K. Turekian,et al.  Inhomogeneous accumulation of the earth from the primitive solar nebula. , 1969 .

[9]  G. Dunn,et al.  Measurement of total cross sections for electron recombination with NO+ and O2 + using ion storage techniques , 1974 .

[10]  D. Hunten The Escape of H2 from Titan , 1973 .

[11]  F. Mackenzie,et al.  Evolution of sedimentary rocks , 1971 .

[12]  R. Cicerone,et al.  Effect of water vapor on the destruction of ozone in the stratosphere perturbed by ClX or NO x pollutants , 1976 .

[13]  M. Ackerman Ultraviolet solar radiation related to mesospheric processes , 2017 .

[14]  M. A. Biondi,et al.  ELECTRON TEMPERATURE DEPENDENCE OF RECOMBINATION OF O$sub 2$$sup +$ AND N$sub 2$$sup +$ IONS WITH ELECTRONS. , 1969 .

[15]  William Walden Rubey Geologic history of sea water , 1961 .

[16]  M. Schwarzschild,et al.  VARIATION OF THE GRAVITATIONAL CONSTANT AND THE EVOLUTION OF THE SUN , 1964 .

[17]  F. Fehsenfeld,et al.  Laboratory measurement of the rate of the reaction O+ + O2 → O2+ + O at thermal energy , 1965 .

[18]  W. E. Wilson A Critical Review of the Gas‐Phase Reaction Kinetics of the Hydroxyl Radical , 1972 .

[19]  R. W. Ditchburn,et al.  The absorption of molecular oxygen between 1850 and 2500 Å , 1962 .

[20]  F. Fehsenfeld,et al.  Thermal Energy Reaction Rate Constants for H+ and CO+ with O and NO , 1972 .

[21]  F. Fehsenfeld,et al.  Afterglow Studies of the Reactions He+, He(23S), and O+ with Vibrationally Excited N2 , 1968 .

[22]  R. C. Roeder,et al.  SOLAR EVOLUTION AND BRANS-DICKE COSMOLOGY , 1966 .

[23]  I. Campbell,et al.  The association of oxygen atoms and their combination with nitrogen atoms , 1967, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[24]  James G. Anderson,et al.  Kinetics of the reaction OH (v = 0) + O3 → HO2 + O2 , 1973 .

[25]  E. Ferguson Rate constants of thermal energy binary ion-molecule reactions of aeronomic interest , 1973 .

[26]  R. Armstrong A model for the evolution of strontium and lead isotopes in a dynamic Earth , 1968 .

[27]  F. Fehsenfeld,et al.  Rate constants for the reaction of CO2+ with O, O2 and NO; N2+ with O and NO; and O2+ with NO , 1970 .

[28]  S. Atreya,et al.  Ammonia photolysis and the greenhouse effect in the primordial atmosphere of the earth , 1979 .

[29]  C. Sagan,et al.  Earth and Mars: Evolution of Atmospheres and Surface Temperatures , 1972, Science.

[30]  A. Lloyd Evaluated and estimated kinetic data for phase reactions of the hydroperoxyl radical , 1974 .

[31]  F. Fehsenfeld,et al.  Thermal‐Energy Ion—Neutral Reaction Rates. VII. Some Hydrogen‐Atom Abstraction Reactions , 1967 .

[32]  S. Liu,et al.  Realistic Model of Hydrogen Constituents in the Lower Atmosphere and Escape Flux from the Upper Atmosphere , 1974 .

[33]  Paul Harteck,et al.  Ultraviolet absorption coefficients of CO2, CO, O2, H2O, N2O, NH3, NO, SO2, and CH4 between 1850 and 4000 A , 1963 .

[34]  S. Down,et al.  Kinetic behaviour of OH X2Π and A2σ+ using molecular resonance fluorescence spectrometry , 1974 .

[35]  B. J. MASON,et al.  Chemistry of the Atmosphere , 1964, Nature.

[36]  S. Liu,et al.  The regulation of hydrogen and oxygen escape from Mars , 1976 .

[37]  D. Shemansky,et al.  CO2 Extinction Coefficient 1700–3000 Å , 1972 .

[38]  R. L. Brown,et al.  Survey of Photochemical and Rate Data for Twenty-eight Reactions of Interest in Atmospheric Chemistry , 1973 .

[39]  S. Liu,et al.  The Aeronomy of Hydrogen in the Atmosphere of the Earth , 1974 .

[40]  R. Hudson Chlorofluoromethanes and the Stratosphere , 1977 .

[41]  S. Liu,et al.  Mesospheric Hydrogen Related to Exospheric Escape Mechanisms , 1974 .

[42]  J. Heicklen,et al.  Kinetics and Mechanism of the Reaction of O(3P) with Carbon Monoxide , 1972 .

[43]  G. R. Cook,et al.  A reinvestigation of the absorption cross- sections of molecular oxygen in the 1050–1800 Å region , 1964 .

[44]  G. Streit,et al.  Temperature dependence of O(1D) rate constants for reactions with O2, N2, CO2, O3, and H2O , 1976 .

[45]  F. Fehsenfeld,et al.  Thermal‐Energy Ion—Neutral Reaction Rates. V. Measured Rate Constants for C+ and CO+ Reactions with O2 and CO2 , 1966 .

[46]  L. C. Marshall,et al.  The history of oxygenic concentration in the Earth's atmosphere , 1964 .

[47]  R. T. Brinkmann Dissociation of water vapor and evolution of oxygen in the terrestrial atmosphere , 1969 .

[48]  M. McElroy Mars: An Evolving Atmosphere , 1972, Science.

[49]  D. Butler THE IONOSPHERE OF VENUS , 1975 .

[50]  F. Fehsenfeld,et al.  Thermal Energy Ion—Neutral Reaction Rates. IV. Nitrogen Ion Charge‐Transfer Reactions with CO and CO2 , 1966 .

[51]  V. Carter,et al.  Predissociation in the Schumann‐Runge Band System of O2: Laboratory measurements and atmospheric effects , 1969 .

[52]  G. W. Harris,et al.  Rates of reaction of HO2 with HO and O studied by laser magnetic resonance , 1977, Nature.

[53]  D. Garvin,et al.  Chemical kinetic and photochemical data for modelling atmospheric chemistry. Final report , 1975 .

[54]  H. D. Holland Model for the Evolution of the Earth’s Atmosphere , 1962 .

[55]  M. Nicolet,et al.  The aeronomic dissociation of nitric oxide , 1973 .

[56]  F. Fehsenfeld,et al.  TEMPERATURE DEPENDENCE OF SLOW ION--ATOM INTERCHANGE REACTIONS. , 1969 .

[57]  L. V. Berkner,et al.  On the Origin and Rise of Oxygen Concentration in the Earth's Atmosphere , 1965 .