The verisimilitude of the independent pixel approximation used in cloud remote sensing

Abstract We assess the validity of the “independent pixel approximation” (IPA) using Monte Carlo simulations of realistic scale-invariant clouds modeled with 2-D horizontal variations in optical depth. The IPA uses a plane-parallel approximation for each pixel, and is used in virtually all cloud remote sensing algorithms. We confirm the validity of the IPA at the largest scales and demonstrate its shortcomings on the smallest scales: a) It overestimates the variability of the radiation field when the optical depth field is known, and b) it underestimates the variability of the optical depth field when the radiation field is known. Both effects are due to smoothing by horizontal fluxes.

[1]  D. Schertzer,et al.  Discrete angle radiative transfer: 3. Numerical results and meteorological applications , 1990 .

[2]  Howard W. Barker,et al.  Cumulus cloud radiative properties and the characteristics of satellite radiance wavenumber spectra , 1992 .

[3]  Robert F. Cahalan,et al.  Independent Pixel and Monte Carlo Estimates of Stratocumulus Albedo , 1994 .

[4]  L. C. Henyey,et al.  Diffuse radiation in the Galaxy , 1940 .

[5]  Boris A. Kargin,et al.  The Monte Carlo Methods in Atmospheric Optics , 1980 .

[6]  K. Evans Two-Dimensional Radiative Transfer in Cloudy Atmospheres: The Spherical Harmonic Spatial Grid Method , 1993 .

[7]  S. Lovejoy Area-Perimeter Relation for Rain and Cloud Areas , 1982, Science.

[8]  M. King,et al.  Determination of the optical thickness and effective particle radius of clouds from reflected solar , 1990 .

[9]  D. Schertzer,et al.  Radiative Transfer in Multifractal Clouds , 1991 .

[10]  D. O'Brien,et al.  Accelerated quasi Monte Carlo integration of the radiative transfer equation , 1992 .

[11]  M. King,et al.  Determination of the Optical Thickness and Effective Particle Radius of Clouds from Reflected Solar Radiation Measurements. Part II: Marine Stratocumulus Observations , 1991 .

[12]  Moustafa T. Chahine,et al.  Advances in Remote Sensing Retrieval Methods , 1986 .

[13]  Robert F. Cahalan,et al.  Bounded cascade models as nonstationary multifractals. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[14]  Radiative transfer in spatially heterogeneous, two-dimensional, anisotropically scattering media , 1986 .

[15]  Shaun Lovejoy,et al.  Discrete-angle radiative transfer in a multifractal medium , 1991, Optics & Photonics.

[16]  T. McKee,et al.  Scattering of Visible Radiation by Finite Clouds , 1974 .

[17]  C. Meneveau,et al.  Simple multifractal cascade model for fully developed turbulence. , 1987, Physical review letters.

[18]  Robert F. Cahalan Bounded cascade clouds: albedo and effective thickness , 1994 .

[19]  Robert F. Cahalan,et al.  The albedo of fractal stratocumulus clouds , 1994 .

[20]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[21]  Edward C. Waymire,et al.  Multifractal Dimensions and Scaling Exponents for Strongly Bounded Random Cascades , 1992 .

[22]  Robert F. Cahalan,et al.  Marine stratocumulus structure , 1989 .

[23]  Anthony B. Davis,et al.  Multifractal characterizations of nonstationarity and intermittency in geophysical fields: Observed, retrieved, or simulated , 1994 .