Lorentzian spacetimes with constant curvature invariants in four dimensions

In this paper we study Lorentzian spacetimes for which all polynomial scalar invariants constructed from the Riemann tensor and its covariant derivatives are constant (CSI spacetimes) in three dimensions. We determine all such CSI metrics explicitly, and show that for every CSI with particular constant invariants there is a locally homogeneous spacetime with precisely the same constant invariants. We prove that a three-dimensional CSI spacetime is either (i) locally homogeneous or (ii) it is locally a Kundt spacetime. Moreover, we show that there exists a null frame in which the Riemann (Ricci) tensor and its derivatives are of boost order zero with constant boost weight zero components at each order. Lastly, these spacetimes can be explicitly constructed from locally homogeneous spacetimes and vanishing scalar invariant spacetimes.

[1]  Mirjana Djorić,et al.  Three-Dimensional Lorentz Metrics and Curvature Homogeneity of Order One , 2000 .

[2]  On spacetimes with constant scalar invariants , 2005, gr-qc/0509113.

[3]  ALIGNMENT AND ALGEBRAICALLY SPECIAL TENSORS IN LORENTZIAN GEOMETRY , 2004, gr-qc/0401010.

[4]  Lorentzian spacetimes with constant curvature invariants in four dimensions , 2007, 0710.3903.

[5]  S. Siklos Lobatchevski plane gravitational waves. , 1985 .

[6]  Lieven Vanhecke,et al.  Curvature invariants, differential operators and local homogeneity , 1996 .

[7]  M. Rubin,et al.  Dynamics of dimensional reduction , 1980 .

[8]  I. M. Singer,et al.  Infinitesimally homogeneous spaces , 1960 .

[9]  V. Pravda,et al.  All spacetimes with vanishing curvature invariants , 2002 .

[10]  J. Milnor Curvatures of left invariant metrics on lie groups , 1976 .

[11]  A. Coley Classification of the Weyl tensor in higher dimensions and applications , 2007, 0710.1598.

[12]  R. Milson,et al.  THE CURVATURE HOMOGENEITY BOUND FOR LORENTZIAN FOUR-MANIFOLDS , 2007, 0711.3851.

[13]  A. Coley,et al.  Spacetimes characterized by their scalar curvature invariants , 2009, 0901.0791.

[14]  G. Hall,et al.  Three-dimensional space-times , 1987 .

[15]  R. T. Sharp,et al.  Invariants of real low dimension Lie algebras , 1976 .

[16]  Gravitational field of a spinning radiation beam pulse in higher dimensions , 2005, hep-th/0504027.

[17]  A. Coley,et al.  Metrics with vanishing quantum corrections , 2008, 0803.2438.

[18]  M. Gribaudo,et al.  2002 , 2001, Cell and Tissue Research.

[19]  G. Gibbons,et al.  Time-dependent multi-centre solutions from new metrics with holonomy Sim(n − 2) , 2007, 0709.2440.

[20]  Lieven Vanhecke,et al.  Curvature homogeneity for four-dimensional manifolds , 1995 .

[21]  G. Hall Symmetries and Curvature Structure in General Relativity , 2004 .

[22]  Giovanni Calvaruso,et al.  Homogeneous structures on three-dimensional Lorentzian manifolds , 2007 .

[23]  A. Coley,et al.  Kundt spacetimes , 2009, 0901.0394.

[24]  A. Berlin On Lorentzian Ricci-Flat Homogeneous Manifolds , 2006 .

[25]  R. Milson,et al.  The type N Karlhede bound is sharp , 2007, 0710.0688.

[26]  J. Senovilla Second-order symmetric Lorentzian manifolds: I. Characterization and general results , 2006, math/0604113.

[27]  A. Coley,et al.  Supergravity solutions with constant scalar invariants , 2007, 0707.0957.

[28]  V. Pravda,et al.  Vanishing scalar invariant spacetimes in higher dimensions , 2004 .

[29]  R. Milson,et al.  VSIi space–times and the ϵ-property , 2005, gr-qc/0503040.