Lorentzian spacetimes with constant curvature invariants in four dimensions
暂无分享,去创建一个
[1] Mirjana Djorić,et al. Three-Dimensional Lorentz Metrics and Curvature Homogeneity of Order One , 2000 .
[2] On spacetimes with constant scalar invariants , 2005, gr-qc/0509113.
[3] ALIGNMENT AND ALGEBRAICALLY SPECIAL TENSORS IN LORENTZIAN GEOMETRY , 2004, gr-qc/0401010.
[4] Lorentzian spacetimes with constant curvature invariants in four dimensions , 2007, 0710.3903.
[5] S. Siklos. Lobatchevski plane gravitational waves. , 1985 .
[6] Lieven Vanhecke,et al. Curvature invariants, differential operators and local homogeneity , 1996 .
[7] M. Rubin,et al. Dynamics of dimensional reduction , 1980 .
[8] I. M. Singer,et al. Infinitesimally homogeneous spaces , 1960 .
[9] V. Pravda,et al. All spacetimes with vanishing curvature invariants , 2002 .
[10] J. Milnor. Curvatures of left invariant metrics on lie groups , 1976 .
[11] A. Coley. Classification of the Weyl tensor in higher dimensions and applications , 2007, 0710.1598.
[12] R. Milson,et al. THE CURVATURE HOMOGENEITY BOUND FOR LORENTZIAN FOUR-MANIFOLDS , 2007, 0711.3851.
[13] A. Coley,et al. Spacetimes characterized by their scalar curvature invariants , 2009, 0901.0791.
[14] G. Hall,et al. Three-dimensional space-times , 1987 .
[15] R. T. Sharp,et al. Invariants of real low dimension Lie algebras , 1976 .
[16] Gravitational field of a spinning radiation beam pulse in higher dimensions , 2005, hep-th/0504027.
[17] A. Coley,et al. Metrics with vanishing quantum corrections , 2008, 0803.2438.
[18] M. Gribaudo,et al. 2002 , 2001, Cell and Tissue Research.
[19] G. Gibbons,et al. Time-dependent multi-centre solutions from new metrics with holonomy Sim(n − 2) , 2007, 0709.2440.
[20] Lieven Vanhecke,et al. Curvature homogeneity for four-dimensional manifolds , 1995 .
[21] G. Hall. Symmetries and Curvature Structure in General Relativity , 2004 .
[22] Giovanni Calvaruso,et al. Homogeneous structures on three-dimensional Lorentzian manifolds , 2007 .
[23] A. Coley,et al. Kundt spacetimes , 2009, 0901.0394.
[24] A. Berlin. On Lorentzian Ricci-Flat Homogeneous Manifolds , 2006 .
[25] R. Milson,et al. The type N Karlhede bound is sharp , 2007, 0710.0688.
[26] J. Senovilla. Second-order symmetric Lorentzian manifolds: I. Characterization and general results , 2006, math/0604113.
[27] A. Coley,et al. Supergravity solutions with constant scalar invariants , 2007, 0707.0957.
[28] V. Pravda,et al. Vanishing scalar invariant spacetimes in higher dimensions , 2004 .
[29] R. Milson,et al. VSIi space–times and the ϵ-property , 2005, gr-qc/0503040.