The geometrical factors determining the electrotonic properties of a molluscan neurone

1. Light and electron micrographs of sections of the gastro‐oesophageal giant neurone (G cell) of the nudibranch mollusc, Anisodoris nobilis, show that its somatic and axonal membranes are deeply infolded. The surface and volume of its soma and axon have been calculated from measurements taken at the light and electron microscope on sections of the G cell.

[1]  A. Gorman,et al.  THE EXTRACELLULAR SPACE OF A SIMPLE MOLLUSCAN NERVOUS SYSTEM AND ITS PERMEABILITY TO POTASSIUM , 1973 .

[2]  A. Gorman,et al.  The passive electrical properties of the membrane of a molluscan neurone , 1972, The Journal of physiology.

[3]  A. Gorman,et al.  Axonal localization of an excitatory post-synaptic potential in a molluscan neurone. , 1970, Journal of Experimental Biology.

[4]  A. Gorman,et al.  The Input-Output Organization Of a Pair of Giant Neurones in the Mollusc, Anisodoris Nobilis (MACFARLAND) , 1969 .

[5]  R. Coggeshall,et al.  A light and electron microscope study of the abdominal ganglion of Aplysia californica. , 1967, Journal of neurophysiology.

[6]  L. Tauc Transmission in invertebrate and vertebrate ganglia. , 1967, Physiological reviews.

[7]  E. C. Amoroso,et al.  The fine structure of neurons and other elements in the nervous system of the giant African land snail Archachatina marginata , 1964, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[8]  L. Goldman THE EFFECTS OF STRETCH ON IMPULSE PROPAGATION IN THE MEDIAN GIANT FIBER OF LUMBRICUS. , 1963, Journal of cellular and comparative physiology.

[9]  L. Goldman The effect of stretch on the conduction velocity of single nerve fibers in Aplysia. , 1961, Journal of cellular and comparative physiology.

[10]  E. Batham INFOLDINGS OF NERVE FIBRE MEMBRANES IN THE OPISTHOBRANCH MOLLUSC APLYSIA CALIFORNICA , 1961, The Journal of biophysical and biochemical cytology.

[11]  W. Rall Membrane potential transients and membrane time constant of motoneurons. , 1960, Experimental neurology.

[12]  W. Rall Branching dendritic trees and motoneuron membrane resistivity. , 1959, Experimental neurology.

[13]  F. Schlote Submikroskopische Morphologie von Gastropodennerven , 1957, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[14]  A. R. Martin,et al.  The effect of change in length on conduction velocity in muscle , 1954, The Journal of physiology.

[15]  A. Hodgkin,et al.  A note on conduction velocity , 1954, The Journal of physiology.

[16]  D. Faulstick,et al.  The mechanism of accumulation. , 1950 .

[17]  A. Hodgkin,et al.  The electrical constants of a crustacean nerve fibre , 1946, Proceedings of the Royal Society of London. Series B - Biological Sciences.

[18]  A. J. Carlson,et al.  Physiological evidence of the fludity of the conducting substance in the pedel nerves of the slug—Ariolimax columbianus , 1904 .

[19]  H. Meves The ionic requirements for the production of action potentials in helix pomatia neurones , 2004, Pflügers Archiv.

[20]  D. Sakharov,et al.  [Submicroscopic morphology of trophospongium in the ganglia of nudibranchiate molluscs]. , 1965, Zhurnal obshchei biologii.

[21]  R. Lorente de Nó,et al.  Contribution to the mathematical theory of the electrotonus. , 1947, Studies from the Rockefeller institute for medical research. Reprints. Rockefeller Institute for Medical Research.

[22]  A. Hodgkin Evidence for electrical transmission in nerve: Part I. , 1937, The Journal of physiology.

[23]  Bertil Hanström Vergleichende Anatomie des Nervensystems der wirbellosen Tiere: unter Berücksichtigung seiner Funktion , 1929, Nature.