Drivers assessment of zooplankton grazing on phytoplankton under different scenarios of fish predation and turbidity in an in situ mesocosm experiment

[1]  Ariadne do Nascimento Moura,et al.  Seasonal variations of morpho-functional phytoplankton groups influence the top-down control of a cladoceran in a tropical hypereutrophic lake , 2019, Aquatic Ecology.

[2]  R. Sinistro,et al.  Assessing the relevance of top-down and bottom-up effects as phytoplankton structure drivers in a subtropical hypereutrophic shallow lake , 2019, Aquatic Ecology.

[3]  A. N. Moura,et al.  Phytoplankton–zooplankton relationships based on phytoplankton functional groups in two tropical reservoirs , 2019, Marine and Freshwater Research.

[4]  Chelsey L. Nieman,et al.  Visual performance impaired by elevated sedimentary and algal turbidity in walleye Sander vitreus and emerald shiner Notropis atherinoides. , 2019, Journal of fish biology.

[5]  A. Mamani,et al.  Combined effects of fish and macroinvertebrate predation on zooplankton in a littoral mesocosm experiment , 2018, Hydrobiologia.

[6]  H. Habersack,et al.  The Role of Sediment and Sediment Dynamics in the Aquatic Environment , 2018 .

[7]  E. Jeppesen,et al.  Fish but Not Macroinvertebrates Promote Trophic Cascading Effects in High Density Submersed Plant Experimental Lake Food Webs in Two Contrasting Climate Regions , 2017 .

[8]  M. Pouilly,et al.  Climatic seasonality, hydrological variability, and geomorphology shape fish assemblage structure in a subtropical floodplain , 2017, Freshwater Science.

[9]  A. N. Moura,et al.  Effects of zooplankton and nutrients on phytoplankton: an experimental analysis in a eutrophic tropical reservoir , 2017 .

[10]  Feizhou Chen,et al.  Effect of suspended solids on interaction between filter-feeding fish Aristichthys nobilis and zooplankton in a shallow lake using a mesocosm experiment , 2017 .

[11]  B. Qin,et al.  The synergetic effects of turbulence and turbidity on the zooplankton community structure in large, shallow Lake Taihu , 2017, Environmental Science and Pollution Research.

[12]  R. Sinistro,et al.  Why predation is not a controlling factor of phytoplankton in a Neotropical shallow lake: a morpho-functional perspective , 2017, Hydrobiologia.

[13]  M. Grabowska,et al.  Effects of lateral connectivity on zooplankton community structure in floodplain lakes , 2016, Hydrobiologia.

[14]  Prepared Standard methods for the examination of water and wastewater , 2016 .

[15]  M. S. Arcifa,et al.  Microcrustaceans and predators: diel migration in a tropical lake and comparison with shallow warm lakes , 2016 .

[16]  M. Pieraccini,et al.  Aquatic Conservation : Marine and Freshwater Ecosystems , 2016 .

[17]  G. Mayora,et al.  Can top-down and bottom-up forces explain phytoplankton structure in a subtropical and shallow groundwater-connected lake? , 2015 .

[18]  Chen Feizhou,et al.  Effect of Sediment Resuspension on Predation of Planktivorous Fish on Zooplankton , 2015 .

[19]  G. Gong,et al.  Increasing zooplankton size diversity enhances the strength of top-down control on phytoplankton through diet niche partitioning. , 2013, The Journal of animal ecology.

[20]  K. Havens,et al.  Zooplankton to phytoplankton biomass ratios in shallow Florida lakes: an evaluation of seasonality and hypotheses about factors controlling variability , 2013, Hydrobiologia.

[21]  E. Bessa,et al.  Mutilating predation in the Cheirodontinae Odontostilbe pequira (Characiformes: Characidae) , 2012 .

[22]  F. Roland,et al.  Phytoplankton biomass is mainly controlled by hydrology and phosphorus concentrations in tropical hydroelectric reservoirs , 2012, Hydrobiologia.

[23]  I. Izaguirre,et al.  Comparison of morpho-functional phytoplankton classifications in human-impacted shallow lakes with different stable states , 2012, Hydrobiologia.

[24]  C.J.F. ter Braak,et al.  Canoco Reference Manual and User’s Guide: Software for Ordination (version 5.0) , 2012 .

[25]  M. Pouilly,et al.  Flood pulse and the dynamics of fish assemblage structure from neotropical floodplain lakes , 2011 .

[26]  Luigi Naselli-Flores,et al.  Invited Review - Fight on Plankton! or, Phytoplankton Shape and Size as Adaptive Tools to Get Ahead in the Struggle for Life , 2011 .

[27]  Erik Jeppesen,et al.  High predation is of key importance for dominance of small-bodied zooplankton in warm shallow lakes: evidence from lakes, fish exclosures and surface sediments , 2011, Hydrobiologia.

[28]  G. Flaim,et al.  Using the guild ratio to characterize pelagic rotifer communities , 2011, Hydrobiologia.

[29]  M. Scheffer,et al.  Omnivory by Planktivores Stabilizes Plankton Dynamics, but May Either Promote or Reduce Algal Biomass , 2010, Ecosystems.

[30]  R. Sinistro Top-down and bottom-up regulation of planktonic communities in a warm temperate wetland , 2010 .

[31]  C. Bonecker,et al.  Biodiversity of zooplankton communities in the Upper Paraná River floodplain: interannual variation from long-term studies. , 2009, Brazilian journal of biology = Revista brasleira de biologia.

[32]  Horacio Zagarese,et al.  Annual patterns of phytoplankton density and primary production in a large, shallow lake: the central role of light. , 2009 .

[33]  Horacio Zagarese,et al.  Phytoplankton and primary production in clear-vegetated, inorganic-turbid, and algal-turbid shallow lakes from the pampa plain (Argentina) , 2009, Hydrobiologia.

[34]  J. Paggi,et al.  Hydrological Connectivity as a Shaping Force in the Zooplankton Community of Two Lakes in the Paraná River Floodplain , 2008 .

[35]  E. Jeppesen,et al.  Field and experimental evidence of the effect of Jenynsia multidentata, a small omnivorous–planktivorous fish, on the size distribution of zooplankton in subtropical lakes , 2008 .

[36]  J. L. Attayde,et al.  Omnivory does not prevent trophic cascades in pelagic food webs , 2007 .

[37]  B. Beisner,et al.  Functional diversity of crustacean zooplankton communities: towards a trait‐based classification , 2007 .

[38]  M. Amsler,et al.  Suspended sediment at a cross section of the Middle Parana River: concentration, granulometry and influence of the main tributaries , 2007 .

[39]  N. Salmaso,et al.  Morpho-Functional Groups and phytoplankton development in two deep lakes (Lake Garda, Italy and Lake Stechlin, Germany) , 2007, Hydrobiologia.

[40]  S. Thomaz,et al.  Floods increase similarity among aquatic habitats in river-floodplain systems , 2007, Hydrobiologia.

[41]  C. Reynolds The Ecology of Phytoplankton , 2006 .

[42]  C. Lamas,et al.  Comentarios Bibliográficos: "Peces Pampeanos. Guía y Ecología", "Sitio Ramsar Jaaukanigás: Biodiversidad, Aspectos Socioculturales y Conservación (Río Paraná, Santa Fe, Argentina)", "The Middle Paraná River. Limnology of a Subtropical Wetland" , 2006 .

[43]  R. Quirós,et al.  The Effects of Hydrology on Plankton Biomass in Shallow Lakes of the Pampa Plain , 2006, Hydrobiologia.

[44]  L. Nurminen,et al.  Effects of different macrophyte growth forms on sediment and P resuspension in a shallow lake , 2005, Hydrobiologia.

[45]  B. Moss,et al.  The structuring role of free-floating versus submerged plants in a subtropical shallow lake , 2003, Aquatic Ecology.

[46]  Katharina E. Esteves Feeding ecology of three Astyanax species (Characidae, Tetragonopterinae) from a floodplain lake of Mogi-Guaçú River, Paraná River Basin, Brazil , 1996, Environmental Biology of Fishes.

[47]  Henri J. Dumont,et al.  The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters , 1975, Oecologia.

[48]  Reinaldo Bozelli,et al.  Effects of Inorganic Turbidity on the Phytoplankton of an Amazonian Lake Impacted by Bauxite Tailings , 2004, Hydrobiologia.

[49]  F. Unrein,et al.  Algal Assemblages Across a Wetland, from a Shallow Lake to Relictual Oxbow Lakes (Lower Paraná River, South America) , 2004, Hydrobiologia.

[50]  E. Jeppesen,et al.  The Impact of Nutrient State and Lake Depth on Top-down Control in the Pelagic Zone of Lakes: A Study of 466 Lakes from the Temperate Zone to the Arctic , 2003, Ecosystems.

[51]  Jonathan M. Chase,et al.  Strong and weak trophic cascades along a productivity gradient , 2003 .

[52]  J. Benndorf,et al.  Top‐down control of phytoplankton: the role of time scale, lake depth and trophic state , 2002 .

[53]  R. Quirós,et al.  Trophic interactions in pampean shallow lakes: evaluation of silverside predatory effects in mesocosm experiments , 2002 .

[54]  Colin S. Reynolds,et al.  Towards a functional classification of the freshwater phytoplankton , 2002 .

[55]  M. Zalewski,et al.  The importance of floodplains for the dynamics of fish communities of the upper river Paraná , 2001 .

[56]  M. Tuchman,et al.  Distribution and Population Characteristics of Cercopagis pengoi in Lake Ontario , 2001 .

[57]  L. Hansson,et al.  Effects of nutrient recycling by zooplankton and fish on phytoplankton communities , 1999, Oecologia.

[58]  Helmut Hillebrand,et al.  BIOVOLUME CALCULATION FOR PELAGIC AND BENTHIC MICROALGAE , 1999 .

[59]  M. Borchardt,et al.  The Impact of Zooplankton Grazing on Phytoplankton Species Composition and Biomass in Lake Champlain (USA-Canada) , 1999 .

[60]  H. Cyr Cladoceran- and copepod-dominated zooplankton communities graze at similar rates in low-productivity lakes , 1998 .

[61]  P. Chow-Fraser,et al.  Factors that regulate the zooplankton community structure of a turbid, hypereutrophic Great Lakes wetland , 1998 .

[62]  P. Weers,et al.  Growth and reproduction of Daphnia galeata in response to changes in fatty acids, phosphorus, and nitrogen in Chlamydomonas reinhardtii , 1997 .

[63]  N. Maidana,et al.  Taxonomic and ecological studies of the Paraná River diatom flora (Argentina) , 1997 .

[64]  J. T. Turner,et al.  Bacterivory by tropical copepod nauplii: extent and possible significance , 1995 .

[65]  J. Barko,et al.  Macrophyte influences on the zonation of sediment accretion and composition in a north-temperate reservoir , 1990, Archiv für Hydrobiologie.

[66]  J. Burkholder,et al.  Type of suspended clay influences lake productivity and phytoplankton community response to phosphorus loading , 1990 .

[67]  John R. Post,et al.  BOTTOM-UP AND TOP-DOWN IMPACTS ON FRESHWATER PELAGIC COMMUNITY STRUCTURE' , 1989 .

[68]  E. C. Drago Morphological and hydrological characteristics of the floodplain ponds of the Middle Paraná River (Argentina) , 1989 .

[69]  V. Conforti,et al.  Euglenophyta pigmentadas de la Argentina , 1986 .

[70]  R. T. Faulk,et al.  The Role of Suspended Sediments in the Nutrition of Zooplankton in Turbid Reservoirs , 1983 .

[71]  J. Hilton,et al.  Determination of nitrate in lake water by the adaptation of the hydrazine-copper reduction method for use on a discrete analyser: performance statistics and an instrument-induced difference from segmented flow conditions , 1983 .

[72]  H. Bottrell A review of some problems in zooplankton production studies , 1976 .

[73]  III .-A REVISION OF THE ROTATORIAN GENERA BRACHIONUS AND PLATYIAS WITH DESCRIPTIONS OF ONE NEW SPECIES AND TWO NEW VARIETIES , 2022 .