The largest eukaryotic genome of them all

We report the largest eukaryotic genome to date in the monocot Paris japonica (Melanthiaceae, 1C = 152.23 pg), measured using flow cytometry. This value is 15% larger than any previous estimate and extends the range of genome sizes to c. 2400-fold across angiosperms and c. 66 000-fold across eukaryotes. © 2010 The Linnean Society of London, Botanical Journal of the Linnean Society, 2010, 164, 10–15.

[1]  A. L. Takhtadzhi︠a︡n Diversity and classification of flowering plants , 1997 .

[2]  Ilia J Leitch,et al.  Genome size is a strong predictor of cell size and stomatal density in angiosperms. , 2008, The New phytologist.

[3]  Ilia J. Leitch,et al.  Genome Size Evolution in Plants , 2005 .

[4]  T. Gregory,et al.  Coincidence, coevolution, or causation? DNA content, cellsize, and the C‐value enigma , 2001, Biological reviews of the Cambridge Philosophical Society.

[5]  I. Leitch,et al.  Nuclear DNA Amounts in Angiosperms , 1995 .

[6]  R. Pedersen DNA content, ribosomal gene multiplicity, and cell size in fish. , 1971, The Journal of experimental zoology.

[7]  Ilia J. Leitch,et al.  Comparisons with Caenorhabditis (∼100 Mb) and Drosophila (∼175 Mb) Using Flow Cytometry Show Genome Size in Arabidopsis to be ∼157 Mb and thus ∼25 % Larger than the Arabidopsis Genome Initiative Estimate of ∼125 Mb , 2003 .

[8]  M. Chase,et al.  Murderous plants: Victorian Gothic, Darwin and modern insights into vegetable carnivory , 2009 .

[9]  Jaroslav Dolezel,et al.  The origin, evolution and proposed stabilization of the terms 'genome size' and 'C-value' to describe nuclear DNA contents. , 2005, Annals of botany.

[10]  J. Greilhuber,et al.  Flow Cytometry with Plant Cells , 2007 .

[11]  K. Lowe,et al.  Flow Cytometry of Plant Cells , 2003 .

[12]  C. Knight,et al.  Genome size scaling through phenotype space. , 2008, Annals of botany.

[13]  Alexander E Vinogradov,et al.  Selfish DNA is maladaptive: evidence from the plant Red List. , 2003, Trends in genetics : TIG.

[14]  D. Morrison,et al.  Monocots: Systematics and Evolution , 2000 .

[15]  C. A. Thomas The genetic organization of chromosomes. , 1971, Annual review of genetics.

[16]  W. Hong,et al.  Consider the lilies: systematics of liliales , 2000 .

[17]  M. Tamura,et al.  A Phylogenetic Analysis of the Plastid matK Gene with Emphasis on Melanthiaceae sensu lato , 2000 .

[18]  T. Gregory,et al.  Genome size is inversely correlated with relative brain size in parrots and cockatoos. , 2009, Genome.

[19]  I. Leitch,et al.  Genome downsizing in polyploid plants , 2004 .

[20]  Daniel E. Austin Diversity and classification of flowering plants , 1998, Economic Botany.

[21]  B. Zonneveld,et al.  New record holders for maximum genome size in eudicots and monocots. , 2010 .

[22]  I. Leitch,et al.  Genome Size and its Uses: The Impact of Flow Cytometry , 2007 .

[23]  Jonathan F. Wendel,et al.  Genome evolution in polyploids , 2004, Plant Molecular Biology.

[24]  David C. Tank,et al.  An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: , 2009 .

[25]  W. M. Whitten,et al.  A Synopsis of Melanthiaceae (Liliales) with Focus on Character Evolution in Tribe Melanthieae , 2006 .

[26]  W. M. Whitten,et al.  Generic circumscription and relationships in the tribe Melanthieae (Liliales, Melanthiaceae), with emphasis on Zigadenus: evidence from ITS and trnL-F sequence data. , 2001, American journal of botany.

[27]  W. Barthlott,et al.  Smallest angiosperm genomes found in lentibulariaceae, with chromosomes of bacterial size. , 2006, Plant biology.

[28]  M. Chase,et al.  Genome Size Dynamics and Evolution in Monocots , 2010 .

[29]  D. Soltis,et al.  The role of genetic and genomic attributes in the success of polyploids. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[30]  T. Gregory Synergy between sequence and size in Large-scale genomics , 2005, Nature Reviews Genetics.

[31]  J. Wendel,et al.  Recent Insights into Mechanisms of Genome Size Change in Plants , 2010 .

[32]  D. Wake,et al.  Cell size predicts morphological complexity in the brains of frogs and salamanders. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[33]  C. Parisod,et al.  Impact of transposable elements on the organization and function of allopolyploid genomes. , 2010, The New phytologist.

[34]  E. Rodriguez,et al.  Two new nuclear isolation buffers for plant DNA flow cytometry: a test with 37 species. , 2007, Annals of botany.

[35]  J. Doležel,et al.  Nuclear DNA content and genome size of trout and human. , 2003, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[36]  M. Tamura A karyological review of the orders Asparagales and Liliales (Monocotyledonae) , 1995 .

[37]  T. Haga Chromosome Complement of Kinugasa japonica with Special Reference to Its Origin and Behavior , 1937 .

[38]  Apgii An update of the angiosperm phylogeny group classification for the orders and families of flowering plants : APGII , 2003 .

[39]  D. Petrov,et al.  The large genome constraint hypothesis: evolution, ecology and phenotype. , 2005, Annals of botany.

[40]  T. Gregory Genome Size Evolution in Animals , 2005 .

[41]  R. Thorne,et al.  Classification and geography of the flowering plants , 1992, The Botanical Review.

[42]  D. Lisch Epigenetic regulation of transposable elements in plants. , 2009, Annual review of plant biology.

[43]  A. Henderson Monocotyledons: Systematics and evolution. 2 vols. Edited by Paula Rudall, Phillip Cribb, David Cutler & Christopher Humphries. , 1996, Brittonia.

[44]  R. Gregory The evolution of the genome , 2005 .

[45]  J. Van't Hof,et al.  A relationship between DNA content, nuclear volume, and minimum mitotic cycle time. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[46]  J. Doležel,et al.  Estimation of nuclear DNA content in plants using flow cytometry , 2007, Nature Protocols.

[47]  M. Chase,et al.  Genome size in Polystachya (Orchidaceae) and its relationships to epidermal characters. , 2010 .

[48]  A. Takhtajan A revision of Daiswa (Trilliaceae) , 1983 .

[49]  C. Vivarès,et al.  Towards the minimal eukaryotic parasitic genome. , 2000, Current opinion in microbiology.

[50]  Colin Norman,et al.  What Don't We Know? , 2005, Science.