Local Linear Quantile Regression

Abstract In this article we study nonparametric regression quantile estimation by kernel weighted local linear fitting. Two such estimators are considered. One is based on localizing the characterization of a regression quantile as the minimizer of E{pp (Y — a)|X = x}, where ρp is the appropriate “check” function. The other follows by inverting a local linear conditional distribution estimator and involves two smoothing parameters, rather than one. Our aim is to present fully operational versions of both approaches and to show that each works quite well; although either might be used in practice, we have a particular preference for the second. Our automatic smoothing parameter selection method is novel; the main regression quantile smoothing parameters are chosen by rule-of-thumb adaptations of state-of-the-art methods for smoothing parameter selection for regression mean estimation. The techniques are illustrated by application to two datasets and compared in simulations.

[1]  Donald Fraser,et al.  Nonparametric Estimation IV , 1951 .

[2]  C. J. Stone,et al.  Consistent Nonparametric Regression , 1977 .

[3]  W. Cleveland Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .

[4]  H B Valman,et al.  Serum immunoglobulin concentrations in preschool children measured by laser nephelometry: reference ranges for IgG, IgA, IgM. , 1983, Journal of clinical pathology.

[5]  T. Cole Fitting Smoothed Centile Curves to Reference Data , 1988 .

[6]  M. Samanta,et al.  Non-parametric estimation of conditional quantiles , 1989 .

[7]  Probal Chaudhuri,et al.  Nonparametric Estimates of Regression Quantiles and Their Local Bahadur Representation , 1991 .

[8]  Jianqing Fan,et al.  Variable Bandwidth and Local Linear Regression Smoothers , 1992 .

[9]  Jianqing Fan Design-adaptive Nonparametric Regression , 1992 .

[10]  T J Cole,et al.  Smoothing reference centile curves: the LMS method and penalized likelihood. , 1992, Statistics in medicine.

[11]  T. Hastie,et al.  Local Regression: Automatic Kernel Carpentry , 1993 .

[12]  Jianqing Fan Local Linear Regression Smoothers and Their Minimax Efficiencies , 1993 .

[13]  Young K. Truong,et al.  ROBUST NONPARAMETRIC FUNCTION ESTIMATION , 1994 .

[14]  P. Royston,et al.  Regression using fractional polynomials of continuous covariates: parsimonious parametric modelling. , 1994 .

[15]  M. Wand,et al.  Multivariate Locally Weighted Least Squares Regression , 1994 .

[16]  Jianqing Fan,et al.  Local polynomial modelling and its applications , 1994 .

[17]  Jianqing Fan,et al.  Robust Non-parametric Function Estimation , 1994 .

[18]  M. Wand,et al.  An Effective Bandwidth Selector for Local Least Squares Regression , 1995 .

[19]  Jianqing Fan,et al.  Data‐Driven Bandwidth Selection in Local Polynomial Fitting: Variable Bandwidth and Spatial Adaptation , 1995 .

[20]  M. C. Jones,et al.  A Brief Survey of Bandwidth Selection for Density Estimation , 1996 .

[21]  Jianqing Fan,et al.  Estimation of conditional densities and sensitivity measures in nonlinear dynamical systems , 1996 .

[22]  W. Cleveland,et al.  Smoothing by Local Regression: Principles and Methods , 1996 .

[23]  Keming Yu,et al.  Smooth regression quantile estimation , 1997 .

[24]  M. C. Jones,et al.  A comparison of local constant and local linear regression quantile estimators , 1997 .