Neural Networks for Complex Data

Artificial neural networks are simple and efficient machine learning tools. Defined originally in the traditional setting of simple vector data, neural network models have evolved to address more and more difficulties of complex real world problems, ranging from time evolving data to sophisticated data structures such as graphs and functions. This paper summarizes advances on those themes from the last decade, with a focus on results obtained by members of the SAMM team of Université Paris 1.

[1]  Fabrice Rossi,et al.  Clustering functional data with the SOM algorithm , 2004, ESANN.

[2]  Madalina Olteanu,et al.  Non-linear Analysis of Shocks when Financial Markets are Subject to Changes in Regime , 2004, ESANN.

[3]  Philippe C. Besse,et al.  Autoregressive Forecasting of Some Functional Climatic Variations , 2000 .

[4]  S. Osowski,et al.  MLP and SVM networks - a comparative study , 2004, Proceedings of the 6th Nordic Signal Processing Symposium, 2004. NORSIG 2004..

[5]  Madalina Olteanu,et al.  Estimating the Number of Components in a Mixture of Multilayer Perceptrons , 2008, ESANN.

[6]  Fabrice Rossi,et al.  Fast Algorithm and Implementation of Dissimilarity Self-Organizing Maps , 2006, Neural Networks.

[7]  Horst Bunke,et al.  Graph-Based Tools for Data Mining and Machine Learning , 2003, MLDM.

[8]  Patrick Rousset,et al.  Forecasting of curves using a Kohonen classification , 1998 .

[9]  P. Werbos,et al.  Beyond Regression : "New Tools for Prediction and Analysis in the Behavioral Sciences , 1974 .

[10]  Yann LeCun,et al.  Optimal Brain Damage , 1989, NIPS.

[11]  Morgan Mangeas Neural Model Selection: How to Determine the Fittest Criterion? , 1997, ICANN.

[12]  Yves Lechevallier,et al.  Une adaptation des cartes auto-organisatrices pour des données décrites par un tableau de dissimilarités , 2007, ArXiv.

[13]  Yves Lechevallier,et al.  Exploratory analysis of functional data via clustering and optimal segmentation , 2010, Neurocomputing.

[14]  I. Sandberg Notes on weighted norms and network approximation of functionals , 1996 .

[15]  Marie Cottrell,et al.  SOM-based algorithms for qualitative variables , 2004, Neural Networks.

[16]  Barbara Hammer,et al.  Neural methods for non-standard data , 2004, ESANN.

[17]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[18]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2003, ICTAI.

[19]  Fabrice Rossi,et al.  Functional multi-layer perceptron: a non-linear tool for functional data analysis , 2007, Neural Networks.

[20]  F. Rossi,et al.  Functional data analysis with multi layer perceptrons , 2002, Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290).

[21]  Joseph Rynkiewicz,et al.  A 24-h forecast of ozone peaks and exceedance levels using neural classifiers and weather predictions , 2007, Environ. Model. Softw..

[22]  Jan Ramon,et al.  Expressivity versus efficiency of graph kernels , 2003 .

[23]  Halbert White,et al.  Connectionist nonparametric regression: Multilayer feedforward networks can learn arbitrary mappings , 1990, Neural Networks.

[24]  Alexander J. Smola,et al.  Kernels and Regularization on Graphs , 2003, COLT.

[25]  Péter András Kernel-Kohonen Networks , 2002, Int. J. Neural Syst..

[26]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[27]  N. Aronszajn Theory of Reproducing Kernels. , 1950 .

[28]  Marie Cottrell,et al.  How to use the Kohonen algorithm to simultaneously analyze individuals and modalities in a survey , 2005, Neurocomputing.

[29]  Jianfeng Yao,et al.  On Least Squares Estimation for Stable Nonlinear AR Processes , 2000 .

[30]  Joseph Rynkiewicz Hybrid HMM/MLP models for times series prediction , 1999, ESANN.

[31]  Thomas Gärtner,et al.  On Graph Kernels: Hardness Results and Efficient Alternatives , 2003, COLT.

[32]  Joseph Rynkiewicz Consistent estimation of the architecture of multilayer perceptrons , 2006, ESANN.

[33]  T. Villmann Sobolev Metrics for Learning of Functional Data-Mathematical and Theoretical Aspects Report 03 / 2007 , 2007 .

[34]  Ah Chung Tsoi,et al.  Self-Organizing Maps for cyclic and unbounded graphs , 2008, ESANN.

[35]  Vladimir I. Levenshtein,et al.  Binary codes capable of correcting deletions, insertions, and reversals , 1965 .

[36]  A. Lapedes,et al.  Nonlinear signal processing using neural networks: Prediction and system modelling , 1987 .

[37]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[38]  Madalina Olteanu,et al.  Asymptotic properties of mixture-of-experts models , 2010, ESANN.

[39]  Gregory J. Wolff,et al.  Optimal Brain Surgeon and general network pruning , 1993, IEEE International Conference on Neural Networks.

[40]  Fabrice Rossi,et al.  Batch kernel SOM and related Laplacian methods for social network analysis , 2008, Neurocomputing.

[41]  Kurt Hornik,et al.  FEED FORWARD NETWORKS ARE UNIVERSAL APPROXIMATORS , 1989 .

[42]  Joseph Rynkiewicz,et al.  Estimation of Hybrid HMM/MLP models , 2001, ESANN.

[43]  Juha Vesanto,et al.  SOM-based data visualization methods , 1999, Intell. Data Anal..

[44]  Fabrice Rossi,et al.  Theoretical Properties of Projection Based Multilayer Perceptrons with Functional Inputs , 2006, Neural Processing Letters.

[45]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[46]  Jian-Feng Yao,et al.  Modèles de réseaux de neurones pour l'analyse des séries temporelles ou la régression - Estimation, identification, méthode d'élagage SSM , 2001, Rev. d'Intelligence Artif..

[47]  Sébastien Massoni,et al.  Career-Path Analysis Using Optimal Matching and Self-Organizing Maps , 2009, WSOM.

[48]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[49]  Joseph Rynkiewicz General bound of overfitting for MLP regression models , 2011, ESANN.

[50]  Alessio Micheli,et al.  A general framework for unsupervised processing of structured data , 2004, Neurocomputing.

[51]  Risi Kondor,et al.  Diffusion kernels on graphs and other discrete structures , 2002, ICML 2002.

[52]  John D. Lafferty,et al.  Diffusion Kernels on Graphs and Other Discrete Input Spaces , 2002, ICML.

[53]  Joseph Rynkiewicz Asymptotic Law of Likelihood Ratio for Multilayer Perceptron Models , 2008, ISNN.

[54]  Klaus Obermayer,et al.  Self-organizing maps: Generalizations and new optimization techniques , 1998, Neurocomputing.

[55]  Nello Cristianini,et al.  Classification using String Kernels , 2000 .

[56]  Panu Somervuo,et al.  Self-organizing maps of symbol strings , 1998, Neurocomputing.

[57]  A. Abbott,et al.  Sequence Analysis and Optimal Matching Methods in Sociology , 2000 .

[58]  Barbara Hammer,et al.  Topographic Mapping of Large Dissimilarity Data Sets , 2010, Neural Computation.

[59]  Panu Somervuo Online algorithm for the self-organizing map of symbol strings , 2004, Neural Networks.

[60]  Marie Cottrell,et al.  Neural modeling for time series: A statistical stepwise method for weight elimination , 1995, IEEE Trans. Neural Networks.

[61]  Peter J. Rousseeuw,et al.  Clustering by means of medoids , 1987 .

[62]  B. L. Roux,et al.  Geometric Data Analysis: From Correspondence Analysis to Structured Data Analysis , 2004 .

[63]  B. Hammer,et al.  Topographic Processing of Relational Data , 2007 .

[64]  Hans-Georg Müller,et al.  Functional Data Analysis , 2016 .

[65]  Colin Fyfe,et al.  The kernel self-organising map , 2000, KES'2000. Fourth International Conference on Knowledge-Based Intelligent Engineering Systems and Allied Technologies. Proceedings (Cat. No.00TH8516).