A glutamate receptor C-tail recruits CaMKII to suppress retrograde homeostatic signaling

[1]  J. Hell,et al.  CaMKII: a central molecular organizer of synaptic plasticity, learning and memory , 2022, Nature Reviews Neuroscience.

[2]  D. Dickman,et al.  Botulinum neurotoxin accurately separates tonic vs. phasic transmission and reveals heterosynaptic plasticity rules in Drosophila , 2022, bioRxiv.

[3]  D. Dickman,et al.  Autocrine inhibition by a glutamate-gated chloride channel mediates presynaptic homeostatic depression , 2021, Science advances.

[4]  Joana S. Ferreira,et al.  CaMKII activation persistently segregates postsynaptic proteins via liquid phase separation , 2021, Nature Neuroscience.

[5]  Mathias A. Böhme,et al.  Antagonistic interactions between two Neuroligins coordinate pre- and postsynaptic assembly , 2021, Current Biology.

[6]  Smita Yadav,et al.  Kinase Signaling in Dendritic Development and Disease , 2021, Frontiers in Cellular Neuroscience.

[7]  Lina Ni The Structure and Function of Ionotropic Receptors in Drosophila , 2021, Frontiers in Molecular Neuroscience.

[8]  D. Dickman,et al.  Synaptic homeostats: latent plasticity revealed at the Drosophila neuromuscular junction , 2021, Cellular and Molecular Life Sciences.

[9]  D. Dickman,et al.  The auxiliary glutamate receptor subunit dSol-1 promotes presynaptic neurotransmitter release and homeostatic potentiation , 2020, Proceedings of the National Academy of Sciences.

[10]  I. S. Stein,et al.  Non-ionotropic NMDA receptor signaling gates bidirectional structural plasticity of dendritic spines , 2020, bioRxiv.

[11]  D. Dickman,et al.  Distinct Target-Specific Mechanisms Homeostatically Stabilize Transmission at Pre- and Post-synaptic Compartments , 2020, Frontiers in Cellular Neuroscience.

[12]  R. Fetter,et al.  Presynaptic Homeostasis Opposes Disease Progression in Mouse Models of ALS-Like Degeneration: Evidence for Homeostatic Neuroprotection , 2020, Neuron.

[13]  Thomas D. James,et al.  Homeostatic control of Drosophila neuromuscular junction function , 2019, Synapse.

[14]  I. Delvendahl,et al.  Rapid and sustained homeostatic control of presynaptic exocytosis at a central synapse , 2019, Proceedings of the National Academy of Sciences.

[15]  H. Schulman,et al.  CaM Kinase: Still Inspiring at 40 , 2019, Neuron.

[16]  Kevin W. Eliceiri,et al.  ImageJ for the Next Generation of Scientific Image Data , 2019, Microscopy and Microanalysis.

[17]  D. Dickman,et al.  Cul3 and insomniac are required for rapid ubiquitination of postsynaptic targets and retrograde homeostatic signaling , 2019, Nature Communications.

[18]  David J. Anderson,et al.  Imaging neuropeptide release at synapses with a genetically engineered reporter , 2019, eLife.

[19]  Mathias A. Böhme,et al.  Homeostatic scaling of active zone scaffolds maintains global synaptic strength , 2019, The Journal of cell biology.

[20]  I. Delvendahl,et al.  Homeostatic plasticity—a presynaptic perspective , 2019, Current Opinion in Neurobiology.

[21]  Lu Chen,et al.  Homeostatic synaptic plasticity as a metaplasticity mechanism — a molecular and cellular perspective , 2019, Current Opinion in Neurobiology.

[22]  D. Dickman,et al.  Estimation of the Readily Releasable Synaptic Vesicle Pool at the Drosophila Larval Neuromuscular Junction , 2019, Bio-protocol.

[23]  Mathias A. Böhme,et al.  Rapid active zone remodeling consolidates presynaptic potentiation , 2018, Nature Communications.

[24]  M. Cadene,et al.  The Interaction between the Drosophila EAG Potassium Channel and the Protein Kinase CaMKII Involves an Extensive Interface at the Active Site of the Kinase. , 2018, Journal of molecular biology.

[25]  A. Poe,et al.  Robust CRISPR/Cas9-Mediated Tissue-Specific Mutagenesis Reveals Gene Redundancy and Perdurance in Drosophila , 2018, Genetics.

[26]  D. Dickman,et al.  Distinct homeostatic modulations stabilize reduced postsynaptic receptivity in response to presynaptic DLK signaling , 2018, Nature Communications.

[27]  D. Dickman,et al.  Synapse-specific and compartmentalized expression of presynaptic homeostatic potentiation , 2018, eLife.

[28]  Samuel Frere,et al.  Alzheimer’s Disease: From Firing Instability to Homeostasis Network Collapse , 2018, Neuron.

[29]  M. Rich,et al.  Homeostatic synaptic plasticity at the neuromuscular junction in myasthenia gravis , 2018, Annals of the New York Academy of Sciences.

[30]  D. Dickman,et al.  Development of a tissue-specific ribosome profiling approach in Drosophila enables genome-wide evaluation of translational adaptations , 2017, PLoS genetics.

[31]  D. Dickman,et al.  Disparate Postsynaptic Induction Mechanisms Ultimately Converge to Drive the Retrograde Enhancement of Presynaptic Efficacy. , 2017, Cell reports.

[32]  D. Dickman,et al.  Homeostatic plasticity can be induced and expressed to restore synaptic strength at neuromuscular junctions undergoing ALS-related degeneration , 2017, Human molecular genetics.

[33]  R. Fetter,et al.  Retrograde Semaphorin-Plexin Signaling Drives Homeostatic Synaptic Plasticity , 2017, Nature.

[34]  D. Dickman,et al.  A Presynaptic Glutamate Receptor Subunit Confers Robustness to Neurotransmission and Homeostatic Potentiation. , 2017, Cell reports.

[35]  T. Bonhoeffer,et al.  Interactions between synaptic homeostatic mechanisms: an attempt to reconcile BCM theory, synaptic scaling, and changing excitation/inhibition balance , 2017, Current Opinion in Neurobiology.

[36]  Ehud Y. Isacoff,et al.  Input-Specific Plasticity and Homeostasis at the Drosophila Larval Neuromuscular Junction , 2017, Neuron.

[37]  Kevin W. Eliceiri,et al.  ImageJ2: ImageJ for the next generation of scientific image data , 2017, BMC Bioinformatics.

[38]  N. Sonenberg,et al.  Acute Fasting Regulates Retrograde Synaptic Enhancement through a 4E-BP-Dependent Mechanism , 2016, Neuron.

[39]  M. Mayer,et al.  Novel Functional Properties of Drosophila CNS Glutamate Receptors , 2016, Neuron.

[40]  N. Sonenberg,et al.  LRRK2 regulates retrograde synaptic compensation at the Drosophila neuromuscular junction , 2016, Nature Communications.

[41]  H. J. Chung,et al.  Emerging Link between Alzheimer's Disease and Homeostatic Synaptic Plasticity , 2016, Neural plasticity.

[42]  R. Nicoll,et al.  Long-Term Potentiation: From CaMKII to AMPA Receptor Trafficking , 2016 .

[43]  M. Pinter,et al.  Reversible Recruitment of a Homeostatic Reserve Pool of Synaptic Vesicles Underlies Rapid Homeostatic Plasticity of Quantal Content , 2016, The Journal of Neuroscience.

[44]  M. Mayer,et al.  Functional reconstitution of Drosophila melanogaster NMJ glutamate receptors , 2015, Proceedings of the National Academy of Sciences.

[45]  G. Davis,et al.  Homeostatic control of presynaptic neurotransmitter release. , 2015, Annual review of physiology.

[46]  D. Dickman,et al.  Endostatin Is a Trans-Synaptic Signal for Homeostatic Synaptic Plasticity , 2014, Neuron.

[47]  C. A. Frank Homeostatic plasticity at the Drosophila neuromuscular junction , 2014, Neuropharmacology.

[48]  R. Yasuda,et al.  Plasticity of dendritic spines: subcompartmentalization of signaling. , 2014, Annual review of physiology.

[49]  J. Hell,et al.  CaMKII: Claiming Center Stage in Postsynaptic Function and Organization , 2014, Neuron.

[50]  D. Dickman,et al.  Emerging links between homeostatic synaptic plasticity and neurological disease , 2013, Front. Cell. Neurosci..

[51]  Dmitrij Ljaschenko,et al.  Hebbian plasticity guides maturation of glutamate receptor fields in vivo. , 2013, Cell reports.

[52]  John Lisman,et al.  The CaMKII/NMDAR complex as a molecular memory , 2013, Molecular Brain.

[53]  S. Coultrap,et al.  CaMKII regulation in information processing and storage , 2012, Trends in Neurosciences.

[54]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[55]  N. Sonenberg,et al.  TOR Is Required for the Retrograde Regulation of Synaptic Homeostasis at the Drosophila Neuromuscular Junction , 2012, Neuron.

[56]  G. Turrigiano Too many cooks? Intrinsic and synaptic homeostatic mechanisms in cortical circuit refinement. , 2011, Annual review of neuroscience.

[57]  Y. Jan,et al.  Enhancer-driven membrane markers for analysis of nonautonomous mechanisms reveal neuron–glia interactions in Drosophila , 2011, Proceedings of the National Academy of Sciences.

[58]  R. Dingledine,et al.  Glutamate Receptor Ion Channels: Structure, Regulation, and Function , 2010, Pharmacological Reviews.

[59]  Y. Goda,et al.  Unraveling Mechanisms of Homeostatic Synaptic Plasticity , 2010, Neuron.

[60]  H. Zoghbi,et al.  Failure of neuronal homeostasis results in common neuropsychiatric phenotypes , 2008, Nature.

[61]  Tobias M. Rasse,et al.  Activity-dependent site-specific changes of glutamate receptor composition in vivo , 2008, Nature Neuroscience.

[62]  C. A. Frank,et al.  Mechanisms Underlying the Rapid Induction and Sustained Expression of Synaptic Homeostasis , 2006, Neuron.

[63]  Leslie C. Griffith,et al.  Activity-Dependent Gating of CaMKII Autonomous Activity by Drosophila CASK , 2006, Neuron.

[64]  A. Diantonio,et al.  Investigating the safety factor at an invertebrate neuromuscular junction. , 2005, Journal of neurobiology.

[65]  Tobias M. Rasse,et al.  Four Different Subunits Are Essential for Expressing the Synaptic Glutamate Receptor at Neuromuscular Junctions of Drosophila , 2005, The Journal of Neuroscience.

[66]  Yi Zhou,et al.  The eag Potassium Channel Binds and Locally Activates Calcium/Calmodulin-dependent Protein Kinase II* , 2004, Journal of Biological Chemistry.

[67]  A. Diantonio,et al.  Differential Localization of Glutamate Receptor Subunits at the Drosophila Neuromuscular Junction , 2004, The Journal of Neuroscience.

[68]  C. Goodman,et al.  Retrograde Control of Synaptic Transmission by Postsynaptic CaMKII at the Drosophila Neuromuscular Junction , 2003, Neuron.

[69]  Paul De Koninck,et al.  Interaction with the NMDA receptor locks CaMKII in an active conformation , 2001, Nature.

[70]  C. Goodman,et al.  Glutamate Receptor Expression Regulates Quantal Size and Quantal Content at the Drosophila Neuromuscular Junction , 1999, The Journal of Neuroscience.

[71]  C. Goodman,et al.  Genetic Analysis of Glutamate Receptors in Drosophila Reveals a Retrograde Signal Regulating Presynaptic Transmitter Release , 1997, Neuron.

[72]  N. Perrimon,et al.  Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. , 1993, Development.

[73]  J. Plomp,et al.  Adaptation of quantal content to decreased postsynaptic sensitivity at single endplates in alpha‐bungarotoxin‐treated rats. , 1992, The Journal of physiology.

[74]  R. Miledi,et al.  On the release of transmitter at normal, myasthenia gravis and myasthenic syndrome affected human end‐plates. , 1980, The Journal of physiology.

[75]  G. Turrigiano Homeostatic synaptic plasticity: local and global mechanisms for stabilizing neuronal function. , 2012, Cold Spring Harbor perspectives in biology.