Generalized Swept Mid‐structure for Polygonal Models

We introduce a novel mid‐structure called the generalized swept mid‐structure (GSM) of a closed polygonal shape, and a framework to compute it. The GSM contains both curve and surface elements and has consistent sheet‐by‐sheet topology, versus triangle‐by‐triangle topology produced by other mid‐structure methods. To obtain this structure, a harmonic function, defined on the volume that is enclosed by the surface, is used to decompose the volume into a set of slices. A technique for computing the 1D mid‐structures of these slices is introduced. The mid‐structures of adjacent slices are then iteratively matched through a boundary similarity computation and triangulated to form the GSM. This structure respects the topology of the input surface model is a hybrid mid‐structure representation. The construction and topology of the GSM allows for local and global simplification, used in further applications such as parameterization, volumetric mesh generation and medical applications.

[1]  F. Chazal,et al.  Stability and homotopy of a subset of the medial axis , 2004, SM '04.

[2]  Michael Garland,et al.  Fair morse functions for extracting the topological structure of a surface mesh , 2004, ACM Trans. Graph..

[3]  Dinesh Manocha,et al.  Homotopy-preserving medial axis simplification , 2005, SPM '05.

[4]  Bruno Lévy,et al.  Least squares conformal maps for automatic texture atlas generation , 2002, ACM Trans. Graph..

[5]  Kaleem Siddiqi,et al.  Medial Representations: Mathematics, Algorithms and Applications , 2008 .

[6]  Ali Shokoufandeh,et al.  Shock Graphs and Shape Matching , 1998, International Journal of Computer Vision.

[7]  Ying He,et al.  Harmonic 1-form based skeleton extraction from examples , 2009, Graph. Model..

[8]  Pierre Alliez,et al.  Computational geometry algorithms library , 2008, SIGGRAPH '08.

[9]  Anne Verroust-Blondet,et al.  Level set diagrams of polyhedral objects , 1999, SMA '99.

[10]  Elaine Cohen,et al.  Volumetric parameterization and trivariate b-spline fitting using harmonic functions , 2008, SPM '08.

[11]  Konrad Polthier,et al.  CUBECOVER – Parameterization of 3D Volumes , 2011 .

[12]  Elaine Cohen,et al.  Volumetric parameterization of complex objects by respecting multiple materials , 2010, Comput. Graph..

[13]  Michael Garland,et al.  Harmonic functions for quadrilateral remeshing of arbitrary manifolds , 2005, Comput. Aided Geom. Des..

[14]  Tong-Yee Lee,et al.  Skeleton extraction by mesh contraction , 2008, SIGGRAPH 2008.

[15]  Valerio Pascucci,et al.  Spectral surface quadrangulation , 2006, SIGGRAPH '06.

[16]  Franz Aurenhammer,et al.  Medial axis computation for planar free-form shapes , 2009, Comput. Aided Des..

[17]  Sunghee Choi,et al.  The power crust , 2001, SMA '01.

[18]  Gershon Elber,et al.  Efficient solution to systems of multivariate polynomials using expression trees , 2008, 2008 IEEE International Conference on Shape Modeling and Applications.

[19]  Matthew L. Baker,et al.  Computing a family of skeletons of volumetric models for shape description , 2007, Comput. Aided Des..

[20]  Gershon Elber,et al.  Geometric constraint solver using multivariate rational spline functions , 2001, SMA '01.

[21]  M. Pauly,et al.  Discrete scale axis representations for 3D geometry , 2010, ACM Trans. Graph..

[22]  B. Gurumoorthy,et al.  Constructing medial axis transform of planar domains with curved boundaries , 2003, Comput. Aided Des..

[23]  Hang Si,et al.  TetGen: A quality tetrahedral mesh generator and a 3D Delaunay triangulator (Version 1.5 --- User's Manual) , 2013 .

[24]  Hujun Bao,et al.  Boundary aligned smooth 3D cross-frame field , 2011, ACM Trans. Graph..

[25]  Dinesh Manocha,et al.  Exact computation of the medial axis of a polyhedron , 2004, Comput. Aided Geom. Des..

[26]  Cláudio T. Silva,et al.  High-Quality Extraction of Isosurfaces from Regular and Irregular Grids , 2006, IEEE Transactions on Visualization and Computer Graphics.

[27]  J. Hart,et al.  Fair morse functions for extracting the topological structure of a surface mesh , 2004, SIGGRAPH 2004.

[28]  Tamal K. Dey,et al.  Tight cocone: a water-tight surface reconstructor , 2003, SM '03.

[29]  Matthew L. Baker,et al.  Computing a Family of Skeletons of Volumetric Models for Shape Description , 2006, GMP.

[30]  Chandrajit L. Bajaj,et al.  Identifying flat and tubular regions of a shape by unstable manifolds , 2006, SPM '06.

[31]  Dinesh Manocha,et al.  Efficient computation of a simplified medial axis , 2003, SM '03.

[32]  Philip N. Klein,et al.  Shape matching using edit-distance: an implementation , 2001, SODA '01.

[33]  Leila De Floriani,et al.  Multiresolution modeling and visualization of volume data based on simplicial complexes , 1994, VVS '94.

[34]  James N. Damon,et al.  Swept regions and surfaces: Modeling and volumetric properties , 2008, Theor. Comput. Sci..

[35]  Robert E. Tarjan,et al.  Faster scaling algorithms for general graph matching problems , 1991, JACM.

[36]  Benjamin B. Kimia,et al.  On the Local Form and Transitions of Symmetry Sets, Medial Axes, and Shocks , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[37]  Jean-Daniel Boissonnat,et al.  Skeletal Structures , 2008, Shape Analysis and Structuring.