RecoMIA—Recommendations for Marine Image Annotation: Lessons Learned and Future Directions

Marine imaging is transforming into a sensor technology applied for high throughput sampling. In the context of habitat mapping, imaging establishes thereby an important bridge technology regarding the spatial resolution and information content between physical sampling gear (e.g. box corer, multi corer) on the one end and hydro-acoustic sensors on the other end of the spectrum of sampling methods. In contrast to other scientific imaging domains, such as digital pathology, there are no protocols and reports available that guide users (often referred to as observers) in the non-trivial process of assigning semantic categories to whole images, regions or objects of interest, which is referred to as annotation. These protocols are crucial to facilitate image analysis as a robust scientific method. In this article we will review the past observations in manual Marine Image Annotations (MIA) and provide a) a guideline for collecting manual annotations, b) definitions for annotation quality and c) a statistical framework to analyze the performance of human expert annotations and to compare those to computational approaches.

[1]  Jörg Ontrup,et al.  Use of machine-learning algorithms for the automated detection of cold-water coral habitats: a pilot study , 2009 .

[2]  Tim W. Nattkemper,et al.  Biigle - Web 2.0 enabled labelling and exploring of images from the Arctic deep-sea observatory HAUSGARTEN , 2009, OCEANS 2009-EUROPE.

[3]  D.M. Lane,et al.  Texture analysis for seabed classification: co-occurrence matrices vs. self-organizing maps , 1998, IEEE Oceanic Engineering Society. OCEANS'98. Conference Proceedings (Cat. No.98CH36259).

[4]  Ruiju Tong,et al.  Microhabitat and shrimp abundance within a Norwegian cold-water coral ecosystem , 2013 .

[5]  Tim W. Nattkemper,et al.  DELPHI—fast and adaptive computational laser point detection and visual footprint quantification for arbitrary underwater image collections , 2015, Front. Mar. Sci..

[6]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[7]  P. Culverhouse,et al.  Do experts make mistakes? A comparison of human and machine identification of dinoflagellates , 2003 .

[8]  E KohlerKevin,et al.  Coral Point Count with Excel extensions (CPCe) , 2006 .

[9]  Hanumant Singh,et al.  Towards High-resolution Imaging from Underwater Vehicles , 2007, Int. J. Robotics Res..

[10]  Comparison of Image-Acquisition Technologies Used for Benthic Habitat Monitoring , 2012 .

[11]  Alessandro Rizzi,et al.  Underwater color constancy: enhancement of automatic live fish recognition , 2003, IS&T/SPIE Electronic Imaging.

[12]  Lee B. Lusted,et al.  ROC Recollected , 1984 .

[13]  Codruta O. Ancuti,et al.  Enhancing underwater images and videos by fusion , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[14]  T. Schoening,et al.  Investigation of hidden parameters influencing the automated object detection in images from the deep seafloor of the HAUSGARTEN observatory , 2012, 2012 Oceans.

[15]  Raimondo Schettini,et al.  Underwater Image Processing: State of the Art of Restoration and Image Enhancement Methods , 2010, EURASIP J. Adv. Signal Process..

[16]  Ahmad Shahrizan Abdul Ghani,et al.  Underwater image quality enhancement through composition of dual-intensity images and Rayleigh-stretching , 2014, 2014 IEEE Fourth International Conference on Consumer Electronics Berlin (ICCE-Berlin).

[17]  Jun Zhang,et al.  Review on underwater image restoration and enhancement algorithms , 2015, ICIMCS '15.

[18]  Chen Gao,et al.  Human-Visual-System-Inspired Underwater Image Quality Measures , 2016, IEEE Journal of Oceanic Engineering.

[19]  Jacob Cohen A Coefficient of Agreement for Nominal Scales , 1960 .

[20]  Arcot Sowmya,et al.  An Underwater Color Image Quality Evaluation Metric , 2015, IEEE Transactions on Image Processing.

[21]  M. Greiner,et al.  Principles and practical application of the receiver-operating characteristic analysis for diagnostic tests. , 2000, Preventive veterinary medicine.

[22]  박선일,et al.  진단검사의 특성 평가를 위한 Receiver Operating Characteristic (ROC) 곡선의 활용 , 2016 .

[23]  Pang-Ning Tan,et al.  Receiver Operating Characteristic , 2009, Encyclopedia of Database Systems.

[24]  M. Zweig,et al.  Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. , 1993, Clinical chemistry.

[25]  Tim W. Nattkemper,et al.  BIIGLE Tools – A Web 2.0 Approach for Visual Bioimage Database Mining , 2009, 2009 13th International Conference Information Visualisation.

[26]  David G. Delaney,et al.  Marine invasive species: validation of citizen science and implications for national monitoring networks , 2007, Biological Invasions.

[27]  L B Lusted,et al.  Signal detectability and medical decision-making. , 1971, Science.

[28]  Chris Roelfsema,et al.  Towards Automated Annotation of Benthic Survey Images: Variability of Human Experts and Operational Modes of Automation , 2015, PloS one.

[29]  A. Feinstein,et al.  High agreement but low kappa: II. Resolving the paradoxes. , 1990, Journal of clinical epidemiology.

[30]  Karel J. Zuiderveld,et al.  Contrast Limited Adaptive Histogram Equalization , 1994, Graphics Gems.

[31]  J. R. Landis,et al.  The measurement of observer agreement for categorical data. , 1977, Biometrics.

[32]  Phil Culverhouse,et al.  Time to automate identification , 2010, Nature.

[33]  E. Trucco,et al.  Self-Tuning Underwater Image Restoration , 2006, IEEE Journal of Oceanic Engineering.

[34]  B. Shneiderman Science 2.0 , 2008, Science.

[35]  Sudhansu Mallik,et al.  Underwater Image Enhancement , 2016 .

[36]  A. Viera,et al.  Understanding interobserver agreement: the kappa statistic. , 2005, Family medicine.

[37]  M. Waldrop,et al.  Science 2.0. , 2008, Scientific American.

[38]  Anne E. James,et al.  Enhancing the low quality images using Unsupervised Colour Correction Method , 2010, 2010 IEEE International Conference on Systems, Man and Cybernetics.

[39]  H. Singh,et al.  UWIT: underwater image toolbox for optical image processing and mosaicking in MATLAB , 2002, Proceedings of the 2002 Interntional Symposium on Underwater Technology (Cat. No.02EX556).

[40]  Bella Jing Xuan Kua Underwater image enhancement , 2017 .

[41]  Elizabeth A. Krupinski,et al.  Compressing pathology whole-slide images using a human and model observer evaluation , 2012, Journal of pathology informatics.

[42]  A. Órfão,et al.  Clinically useful information provided by the flow cytometric immunophenotyping of hematological malignancies: current status and future directions. , 1999, Clinical chemistry.

[43]  Benjamin F. Jones,et al.  Supporting Online Material Materials and Methods Figs. S1 to S3 References the Increasing Dominance of Teams in Production of Knowledge , 2022 .

[44]  L. Jeppesen,et al.  The Value of Openness in Scientific Problem Solving , 2007 .

[45]  Nor Ashidi Mat Isa,et al.  Underwater image quality enhancement through composition of dual-intensity images and Rayleigh-stretching , 2014, SpringerPlus.

[46]  Helge J. Ritter,et al.  Human vs. machine: evaluation of fluorescence micrographs , 2003, Comput. Biol. Medicine.

[47]  E. Frykberg,et al.  Triage: Principles and Practice , 2005, Scandinavian journal of surgery : SJS : official organ for the Finnish Surgical Society and the Scandinavian Surgical Society.

[48]  A. Feinstein,et al.  High agreement but low kappa: I. The problems of two paradoxes. , 1990, Journal of clinical epidemiology.

[49]  Renzo Kottmann,et al.  A participative tool for sharing, annotating and archiving submarine video data , 2015, OCEANS 2015 - MTS/IEEE Washington.

[50]  J R Beck,et al.  Decision-making Studies in Patient Management , 1991, Medical decision making : an international journal of the Society for Medical Decision Making.

[51]  David M. Lane,et al.  Implementation of a fast coral detector using a supervised machine learning and Gabor Wavelet feature descriptors , 2014, 2014 IEEE Sensor Systems for a Changing Ocean (SSCO)..

[52]  J. Gutt,et al.  Semi-Automated Image Analysis for the Assessment of Megafaunal Densities at the Arctic Deep-Sea Observatory HAUSGARTEN , 2012, PloS one.

[53]  Tim W. Nattkemper,et al.  Ranking Color Correction Algorithms Using Cluster Indices , 2014, 2014 ICPR Workshop on Computer Vision for Analysis of Underwater Imagery.

[54]  Ying-Ching Chen,et al.  Underwater Image Enhancement by Wavelength Compensation and Dehazing , 2012, IEEE Transactions on Image Processing.

[55]  Stefan B. Williams,et al.  True Color Correction of Autonomous Underwater Vehicle Imagery , 2016, J. Field Robotics.

[56]  Donna M. Kocak,et al.  The Current Art of Underwater Imaging -- With a Glimpse of the Past and Vision of the Future , 2005 .

[57]  C. Metz ROC Methodology in Radiologic Imaging , 1986, Investigative radiology.

[58]  Jonas Osterloff,et al.  A computer vision approach for monitoring the spatial and temporal shrimp distribution at the LoVe observatory , 2016 .

[59]  Stefan B. Williams,et al.  Topic-based habitat classification using visual data , 2009, OCEANS 2009-EUROPE.

[60]  José Santos-Victor,et al.  Underwater Video Mosaics as Visual Navigation Maps , 2000, Comput. Vis. Image Underst..

[61]  Rick Rylance,et al.  Grant giving: Global funders to focus on interdisciplinarity , 2015, Nature.

[62]  Frédéric D. Petit,et al.  Underwater image enhancement by attenuation inversionwith quaternions , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[63]  Guy Lapalme,et al.  A systematic analysis of performance measures for classification tasks , 2009, Inf. Process. Manag..

[64]  Eric Brassart,et al.  Colour Image Segmentation Using Homogeneity Method and Data Fusion Techniques , 2010, EURASIP J. Adv. Signal Process..

[65]  David J. Kriegman,et al.  Automated annotation of coral reef survey images , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[66]  H. Kundel,et al.  Measurement of observer agreement. , 2003, Radiology.

[67]  H. Sauermann,et al.  Crowd Science: The Organization of Scientific Research in Open Collaborative Projects , 2013 .