Robust saddle-point criteria for multi-dimensional control optimisation problems with data uncertainty
暂无分享,去创建一个
[1] Manuel Arana-Jiménez,et al. KT-pseudoinvex multidimensional control problem: KT-pseudoinvex multidimensional control problem , 2018 .
[2] R. Boţ,et al. Conjugate Duality in Convex Optimization , 2010 .
[3] Preeti,et al. An exact l1 penalty function method for multi-dimensional first-order PDE constrained control optimization problem , 2020, Eur. J. Control.
[4] Savin Treanţă,et al. Efficiency in generalised V-KT-pseudoinvex control problems , 2018, Int. J. Control.
[5] George W. Swan,et al. Applications of Optimal Control Theory in Biomedicine , 1984 .
[6] Fernando M. Lobo Pereira,et al. Control Design for Autonomous Vehicles: A Dynamic Optimization Perspective , 2001, Eur. J. Control.
[7] Guoyin Li,et al. Robust least square semidefinite programming with applications , 2014, Comput. Optim. Appl..
[8] Kok Lay Teo,et al. On approximate solutions and saddle point theorems for robust convex optimization , 2019, Optimization Letters.
[9] Tadeusz Antczak,et al. Exact penalty functions method for mathematical programming problems involving invex functions , 2009, Eur. J. Oper. Res..
[10] G. S. Christensen,et al. Optimal Control Applications in Electric Power Systems , 1987 .
[11] T. K. Varadan,et al. Approximate Solutions , 2021, Plates.
[12] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[13] Moon Hee Kim,et al. DUALITY THEOREM AND VECTOR SADDLE POINT THEOREM FOR ROBUST MULTIOBJECTIVE OPTIMIZATION PROBLEMS , 2013 .
[14] Preeti,et al. Saddle point criteria for multi-dimensional control optimisation problem involving first-order PDE constraints , 2021, Int. J. Control.
[15] Tadeusz Antczak,et al. Exactness Property of the Exact Absolute Value Penalty Function Method for Solving Convex Nondifferentiable Interval-Valued Optimization Problems , 2018, J. Optim. Theory Appl..
[16] Felipe Alvarez. Absolute minimizer in convex programming by exponential penalty. , 2000 .
[17] Sheng-Jie Li,et al. Characterizations for Optimality Conditions of General Robust Optimization Problems , 2018, J. Optim. Theory Appl..
[18] I. I. Eremin. The penalty method in convex programming , 1967 .
[19] C. Zălinescu. Convex analysis in general vector spaces , 2002 .
[20] Jing Zeng,et al. Characterizations of Approximate Duality and Saddle Point Theorems for Nonsmooth Robust Vector Optimization , 2020, Numerical Functional Analysis and Optimization.
[21] Antonio Rufián-Lizana,et al. Efficient solutions in V-KT-pseudoinvex multiobjective control problems: A characterization , 2009, Appl. Math. Comput..
[22] W. Zangwill. Non-Linear Programming Via Penalty Functions , 1967 .