Robust saddle-point criteria for multi-dimensional control optimisation problems with data uncertainty

This paper deals with some new outcomes on the multi-dimensional control optimisation problem with data uncertainty (UMCOP). By employing the exact l1 penalty function method, we formulate an equiv...

[1]  Manuel Arana-Jiménez,et al.  KT-pseudoinvex multidimensional control problem: KT-pseudoinvex multidimensional control problem , 2018 .

[2]  R. Boţ,et al.  Conjugate Duality in Convex Optimization , 2010 .

[3]  Preeti,et al.  An exact l1 penalty function method for multi-dimensional first-order PDE constrained control optimization problem , 2020, Eur. J. Control.

[4]  Savin Treanţă,et al.  Efficiency in generalised V-KT-pseudoinvex control problems , 2018, Int. J. Control.

[5]  George W. Swan,et al.  Applications of Optimal Control Theory in Biomedicine , 1984 .

[6]  Fernando M. Lobo Pereira,et al.  Control Design for Autonomous Vehicles: A Dynamic Optimization Perspective , 2001, Eur. J. Control.

[7]  Guoyin Li,et al.  Robust least square semidefinite programming with applications , 2014, Comput. Optim. Appl..

[8]  Kok Lay Teo,et al.  On approximate solutions and saddle point theorems for robust convex optimization , 2019, Optimization Letters.

[9]  Tadeusz Antczak,et al.  Exact penalty functions method for mathematical programming problems involving invex functions , 2009, Eur. J. Oper. Res..

[10]  G. S. Christensen,et al.  Optimal Control Applications in Electric Power Systems , 1987 .

[11]  T. K. Varadan,et al.  Approximate Solutions , 2021, Plates.

[12]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[13]  Moon Hee Kim,et al.  DUALITY THEOREM AND VECTOR SADDLE POINT THEOREM FOR ROBUST MULTIOBJECTIVE OPTIMIZATION PROBLEMS , 2013 .

[14]  Preeti,et al.  Saddle point criteria for multi-dimensional control optimisation problem involving first-order PDE constraints , 2021, Int. J. Control.

[15]  Tadeusz Antczak,et al.  Exactness Property of the Exact Absolute Value Penalty Function Method for Solving Convex Nondifferentiable Interval-Valued Optimization Problems , 2018, J. Optim. Theory Appl..

[16]  Felipe Alvarez Absolute minimizer in convex programming by exponential penalty. , 2000 .

[17]  Sheng-Jie Li,et al.  Characterizations for Optimality Conditions of General Robust Optimization Problems , 2018, J. Optim. Theory Appl..

[18]  I. I. Eremin The penalty method in convex programming , 1967 .

[19]  C. Zălinescu Convex analysis in general vector spaces , 2002 .

[20]  Jing Zeng,et al.  Characterizations of Approximate Duality and Saddle Point Theorems for Nonsmooth Robust Vector Optimization , 2020, Numerical Functional Analysis and Optimization.

[21]  Antonio Rufián-Lizana,et al.  Efficient solutions in V-KT-pseudoinvex multiobjective control problems: A characterization , 2009, Appl. Math. Comput..

[22]  W. Zangwill Non-Linear Programming Via Penalty Functions , 1967 .