The Weight Distributions of a Class of Cyclic Codes with Three Nonzeros over F3

Cyclic codes have efficient encoding and decoding algorithms. The decoding error probability and the undetected error probability are usually bounded by or given from the weight distributions of the codes. Most researches are about the determination of the weight distributions of cyclic codes with few nonzeros, by using quadratic forms and exponential sums but limited to low moments. In this paper, we focus on the application of higher moments of the exponential sums to determine the weight distributions of a class of ternary cyclic codes with three nonzeros, combining with not only quadratic forms but also MacWilliams’ identities. Another application of this paper is to emphasize the computer algebra system Magma for the investigation of the higher moments. In the end, the result is verified by one example using Matlab.

[1]  Xiaogang Liu,et al.  On the bounds and achievability about the ODPC of $\mathcal{GRM}(2, m)^*$ over prime field for increasing message length , 2013, ArXiv.

[2]  F. Jessie MacWilliams,et al.  The weight distributions of some minimal cyclic codes , 1981, IEEE Trans. Inf. Theory.

[3]  Keqin Feng,et al.  Weight distribution of some reducible cyclic codes , 2008, Finite Fields Their Appl..

[4]  Xiaogang Liu,et al.  The weight distributions of some cyclic codes with three or four nonzeros over F3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{ , 2013, Designs, Codes and Cryptography.

[5]  Cunsheng Ding,et al.  Hamming weights in irreducible cyclic codes , 2011, Discret. Math..

[6]  A. J. Han Vinck,et al.  A Lower Bound on the Optimum Distance Profiles of the Second-Order Reed–Muller Codes , 2010, IEEE Transactions on Information Theory.

[7]  Xiaogang Liu,et al.  On the bounds and achievability about the ODPC of $$\mathcal{GRM }(2,m)^*$$GRM(2,m)∗ over prime fields for increasing message length , 2015, Des. Codes Cryptogr..

[8]  Cunsheng Ding,et al.  A Family of Five-Weight Cyclic Codes and Their Weight Enumerators , 2013, IEEE Transactions on Information Theory.

[9]  R. McEliece,et al.  Euler products, cyclotomy, and coding☆ , 1972 .

[10]  R. McEliece Irreducible Cyclic Codes and Gauss Sums , 1975 .

[11]  R. Brualdi,et al.  Handbook Of Coding Theory , 2011 .

[12]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[13]  Yuansheng Tang,et al.  Cyclic Codes and Sequences: The Generalized Kasami Case , 2009, IEEE Transactions on Information Theory.

[14]  Cunsheng Ding,et al.  The weight distribution of a class of linear codes from perfect nonlinear functions , 2006, IEEE Transactions on Information Theory.

[15]  Tor Helleseth,et al.  A Family of $m$ -Sequences With Five-Valued Cross Correlation , 2009, IEEE Transactions on Information Theory.

[16]  Yuan Luo,et al.  The weight distributions of some cyclic codes with three or four nonzeros over F3 , 2013, ArXiv.

[17]  D. Anderson A New Class of Cyclic Codes , 1968 .

[18]  Marcel van der Vlugt,et al.  Surfaces and the weight distribution of a family of codes , 1997, IEEE Trans. Inf. Theory.

[19]  F. J. Macwilliams On Binary Cyclic Codes Which are Also Cyclic Codes Over $GF(2^s )$ , 1970 .

[20]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[21]  Maosheng Xiong,et al.  The weight distributions of a class of cyclic codes II , 2011, Finite Fields Their Appl..

[22]  Cunsheng Ding,et al.  The Weight Enumerator of a Class of Cyclic Codes , 2011, IEEE Transactions on Information Theory.

[23]  Keqin Feng,et al.  On the Weight Distributions of Two Classes of Cyclic Codes , 2008, IEEE Transactions on Information Theory.

[24]  Robert W. Fitzgerald,et al.  Sums of Gauss sums and weights of irreducible codes , 2005, Finite Fields Their Appl..

[25]  Keqin Feng,et al.  Cyclic Codes and Sequences From Generalized Coulter–Matthews Function , 2008, IEEE Transactions on Information Theory.

[26]  Cunsheng Ding,et al.  The Weight Distributions of the Duals of Cyclic Codes With Two Zeros , 2011, IEEE Transactions on Information Theory.

[27]  Maosheng Xiong The weight distributions of a class of cyclic codes II , 2014, Des. Codes Cryptogr..

[28]  Lei Hu,et al.  Weight Distribution of A p-ary Cyclic Code , 2009, ArXiv.

[29]  Gennian Ge,et al.  The Weight Distribution of a Class of Cyclic Codes Related to Hermitian Forms Graphs , 2012, IEEE Transactions on Information Theory.

[30]  A. J. Han Vinck,et al.  A lower bound on the optimum distance profiles of the second-order Reed-Muller codes , 2010, IEEE Trans. Inf. Theory.

[31]  Nigel Boston,et al.  The weight distributions of cyclic codes with two zeros and zeta functions , 2010, J. Symb. Comput..

[32]  M. V. Vlugt Hasse-Davenport Curves, Gauss Sums, and Weight Distributions of Irreducible Cyclic Codes , 1995 .

[33]  Tor Helleseth,et al.  Further Results on $m$-Sequences With Five-Valued Cross Correlation , 2009, IEEE Transactions on Information Theory.

[34]  I. Shafarevich Basic algebraic geometry , 1974 .

[35]  Cunsheng Ding,et al.  The Weight Distribution of Some Irreducible Cyclic Codes , 2009, IEEE Transactions on Information Theory.

[36]  Saligram G. S. Shiva,et al.  Permutation decoding of certain triple-error-correcting binary codes (Corresp.) , 1972, IEEE Trans. Inf. Theory.

[37]  Tadao Kasami A decoding procedure for multiple-error-correcting cyclic codes , 1964, IEEE Trans. Inf. Theory.

[38]  Saligram G. S. Shiva,et al.  On permutation decoding of binary cyclic double-error-correcting codes of certain lengths (Corresp.) , 1970, IEEE Trans. Inf. Theory.