Entanglement cost of nonlocal measurements

For certain joint measurements on a pair of spatially separated particles, we ask how much entanglement is needed to carry out the measurement exactly. For a class of orthogonal measurements on two qubits with partially entangled eigenstates, we present upper and lower bounds on the entanglement cost. The upper bound is based on a recent result by Berry [Phys. Rev. A 75, 032349 (2007)]. The lower bound, based on the entanglement production capacity of the measurement, implies that for almost all measurements in the class we consider, the entanglement required to perform the measurement is strictly greater than the average entanglement of its eigenstates. On the other hand, we show that for any complete measurement in dxd dimensions that is invariant under all local generalized Pauli operations, the cost of the measurement is exactly equal to the average entanglement of the states associated with the outcomes.

[1]  Yuan Feng,et al.  Characterizing Locally Indistinguishable Orthogonal Product States , 2007, IEEE Transactions on Information Theory.

[2]  Yuan Feng,et al.  Distinguishability of Quantum States by Separable Operations , 2007, IEEE Transactions on Information Theory.

[3]  H. Stapp Nonlocality , 2009, Compendium of Quantum Physics.

[4]  A. J. Scott,et al.  Generic local distinguishability and completely entangled subspaces , 2007, 0709.4238.

[5]  Scott M. Cohen Understanding entanglement as resource: locally distinguishing unextendible product bases , 2007, 0708.2396.

[6]  A. J. Short,et al.  Ju l 2 00 0 Local Distinguishability of Multipartite Orthogonal Quantum States , 2008 .

[7]  Masato Koashi,et al.  ‘Quantum Nonlocality without Entanglement’ in a Pair of Qubits , 2007, OSA Workshop on Entanglement and Quantum Decoherence.

[8]  M. Ying,et al.  Distinguishing arbitrary multipartite basis unambiguously using local operations and classical communication. , 2006, Physical review letters.

[9]  D. Berry Implementation of multipartite unitary operations with limited resources , 2006, quant-ph/0608137.

[10]  Scott M. Cohen Local distinguishability with preservation of entanglement , 2006, quant-ph/0602026.

[11]  M. Horodecki,et al.  Quantification of quantum correlation of ensembles of states , 2003, quant-ph/0310100.

[12]  S. Bandyopadhyay,et al.  Local distinguishability of any three quantum states , 2006, quant-ph/0612013.

[13]  Yong-Sheng Zhang,et al.  Efficient implementation of controlled rotations by using entanglement (5 pages) , 2005, quant-ph/0509188.

[14]  Masahito Hayashi,et al.  Local copying and local discrimination as a study for nonlocality of a set of states , 2006 .

[15]  Y. Ogata Local distinguishability of quantum states in infinite-dimensional systems , 2005, quant-ph/0507034.

[16]  M. Murao,et al.  Bounds on multipartite entangled orthogonal state discrimination using local operations and classical communication. , 2005, Physical review letters.

[17]  John Watrous,et al.  Bipartite subspaces having no bases distinguishable by local operations and classical communication. , 2005, Physical review letters.

[18]  W. Wootters DISTINGUISHING UNENTANGLED STATES WITH AN UNENTANGLED MEASUREMENT , 2005, quant-ph/0506149.

[19]  Benni Reznik,et al.  Implementing nonlocal gates with nonmaximally entangled states , 2005 .

[20]  Michael Nathanson Distinguishing bipartitite orthogonal states using LOCC: Best and worst cases , 2004, quant-ph/0411110.

[21]  E. Bagan,et al.  Multiple-copy two-state discrimination with individual measurements , 2004, quant-ph/0410097.

[22]  M. Ying,et al.  Optimal conclusive discrimination of two states can be achieved locally , 2004, quant-ph/0407120.

[23]  M. Horodecki,et al.  Distillation protocols: output entanglement and local mutual information. , 2004, Physical review letters.

[24]  H. Fan Distinguishability and indistinguishability by local operations and classical communication. , 2004, Physical review letters.

[25]  A. Chefles Condition for unambiguous state discrimination using local operations and classical communication , 2003, quant-ph/0302066.

[26]  M. Horodecki,et al.  Locally accessible information: how much can the parties gain by cooperating? , 2003, Physical review letters.

[27]  Masato Koashi,et al.  Entanglement cost of generalised measurements , 2003, Quantum Inf. Comput..

[28]  M. Horodecki,et al.  Local indistinguishability: more nonlocality with less entanglement. , 2003, Physical review letters.

[29]  M. Hillery,et al.  Distinguishing two-qubit states using local measurements and restricted classical communication , 2002, quant-ph/0210179.

[30]  Ping Xing Chen,et al.  Orthogonality and distinguishability: Criterion for local distinguishability of arbitrary orthogonal states , 2003 .

[31]  N. Linden,et al.  Optimal entanglement generation from quantum operations , 2002, quant-ph/0205055.

[32]  Debbie W. Leung,et al.  On the capacities of bipartite Hamiltonians and unitary gates , 2002, IEEE Trans. Inf. Theory.

[33]  P. Shor,et al.  Unextendible Product Bases, Uncompletable Product Bases and Bound Entanglement , 1999, quant-ph/9908070.

[34]  Dong Yang,et al.  The distillable entanglement of multiple copies of Bell states , 2002, quant-ph/0204004.

[35]  B. Reznik Remote generalized measurements (POVMs) require non-maximal entanglement , 2002, quant-ph/0203055.

[36]  R F Werner,et al.  Hiding classical data in multipartite quantum states. , 2002, Physical review letters.

[37]  L. Hardy,et al.  Nonlocality, asymmetry, and distinguishing bipartite states. , 2002, Physical review letters.

[38]  Dong Yang,et al.  Optimally conclusive discrimination of nonorthogonal entangled states by local operations and classical communications , 2002 .

[39]  Remote operations and interactions for systems of arbitrary-dimensional Hilbert space: State-operator approach , 2001, quant-ph/0107143.

[40]  S. Huelga,et al.  Remote control of restricted sets of operations: Teleportation of Angles , 2001, quant-ph/0107110.

[41]  Debbie W. Leung,et al.  Quantum data hiding , 2002, IEEE Trans. Inf. Theory.

[42]  Noga Alon,et al.  Unextendible Product Bases , 2001, J. Comb. Theory A.

[43]  A. Sen De,et al.  Distinguishability of Bell states. , 2001, Physical review letters.

[44]  L. Vaidman,et al.  Nonlocal variables with product-state eigenstates , 2001, quant-ph/0103084.

[45]  D. Markham,et al.  Optimal local discrimination of two multipartite pure states , 2001, quant-ph/0102073.

[46]  J. Cirac,et al.  Nonlocal operations: Purification, storage, compression, tomography, and probabilistic implementation , 2000, quant-ph/0012148.

[47]  J. Cirac,et al.  Optimal creation of entanglement using a two-qubit gate , 2000, quant-ph/0011050.

[48]  D. Leung,et al.  Hiding bits in bell states. , 2000, Physical review letters.

[49]  J. Cirac,et al.  Entangling operations and their implementation using a small amount of entanglement. , 2000, Physical review letters.

[50]  S. Barnett,et al.  Entanglement, information and multiparticle quantum operations , 2000, quant-ph/0006106.

[51]  J. Cirac,et al.  Entanglement capabilities of nonlocal Hamiltonians. , 2000, Physical review letters.

[52]  S. Popescu,et al.  Nonlocal content of quantum operations , 2000, quant-ph/0005102.

[53]  London,et al.  Quantum Remote Control: Teleportation of Unitary Operations , 2000, quant-ph/0005061.

[54]  J. Smolin Four-party unlockable bound entangled state , 2000, quant-ph/0001001.

[55]  A. J. Short,et al.  Local distinguishability of multipartite orthogonal quantum states , 2000, Physical review letters.

[56]  J. Eisert,et al.  Optimal local implementation of nonlocal quantum gates , 2000, quant-ph/0005101.

[57]  P. Zanardi,et al.  Entangling power of quantum evolutions , 2000, quant-ph/0005031.

[58]  M. Plenio,et al.  MINIMAL CONDITIONS FOR LOCAL PURE-STATE ENTANGLEMENT MANIPULATION , 1999, quant-ph/9903054.

[59]  G. Vidal Entanglement of pure states for a single copy , 1999, quant-ph/9902033.

[60]  Charles H. Bennett,et al.  Unextendible product bases and bound entanglement , 1998, quant-ph/9808030.

[61]  C. H. Bennett,et al.  Quantum nonlocality without entanglement , 1998, quant-ph/9804053.

[62]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[63]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[64]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[65]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.