High ionic conductivity P(VDF-TrFE)/PEO blended polymer electrolytes for solid electrochromic devices.

Solid polymer electrolytes with excellent ionic conductivity (above 10(-4) S cm(-1)), which result in high optical modulation for solid electrochromic (EC) devices are presented. The combination of a polar host matrix poly(vinylidene fluoride-trifluoroethylene) P(VDF-TrFE) and a solid plasticized of a low molecular weight poly(ethylene oxide) (PEO) (M(w)≤ 20,000) blended polymer electrolyte serves to enhance both the dissolution of lithium salt and the ionic transport. Calorimetric measurement shows a reduced crystallization due to a better intermixing of the polymers with small molecular weight PEO. Vibrational spectroscopy identifies the presence of free ions and ion pairs in the electrolytes with PEO of M(w)≤ 8000. The ionic dissolution is improved using PEO as a plasticizer when compared to liquid propylene carbonate, evidently shown in the transference number analysis. Ionic transport follows the Arrhenius equation with a low activation energy (0.16-0.2 eV), leading to high ionic conductivities. Solid electrochromic devices fabricated with the blended P(VDF-TrFE)/PEO electrolytes and polyaniline show good spectroelectrochemical performance in the visible (300-800 nm) and near-infrared (0.9-2.4 μm) regions with a modulation up to 60% and fast switching speed of below 20 seconds. The successful introduction of the solid polymer electrolytes with its best harnessed qualities helps to expedite the application of various electrochemical devices.

[1]  B. Scrosati,et al.  Nanocomposite polymer electrolytes for lithium batteries , 1998, Nature.

[2]  Xuehong Lu,et al.  A complementary electrochromic device based on polyaniline tethered polyhedral oligomeric silsesquioxane and poly(3,4-ethylenedioxythiophene)/poly(4-styrene sulfonic acid) , 2009 .

[3]  K. Heitner The search for the better polymer electrolyte , 2000 .

[4]  A. Azens,et al.  Aluminium oxide — Poly(vinyl acetate) composite electrolyte for electrochromic devices , 1997 .

[5]  C. Vincent,et al.  Measurement of the apparent lithium ion transference number and salt diffusion coefficient in solid polymer electrolytes , 1999 .

[6]  P. Jacobsson,et al.  A Raman study of ion-polymer and ion-ion interactions in low molecular weight polyether - LiCF3SO3 complexes. , 1992 .

[7]  P. Bruce,et al.  Crystalline and Amorphous Phases in the Poly(ethylene oxide)−LiCF3SO3 System , 1999 .

[8]  Xuehong Lu,et al.  Star-like polyaniline prepared from octa(aminophenyl) silsesquioxane : Enhanced electrochromic contrast and electrochemical stability , 2008 .

[9]  John R. Reynolds,et al.  Electrochromic organic and polymeric materials for display applications , 2006, Displays.

[10]  S. S. Sekhon,et al.  Ionic conductance behaviour of plasticized polymer electrolytes containing different plasticizers , 2002 .

[11]  R. Koksbang,et al.  Transference number measurements on a hybrid polymer electrolyte , 1995 .

[12]  M. Bernard,et al.  Elaboration and study of a PANI/PAMPS/WO3 all solid-state electrochromic device , 1998 .

[13]  N. Ogata,et al.  Estimation of Li+ transport number in polymer electrolytes by the combination of complex impedance and potentiostatic polarization measurements , 1988 .

[14]  R. C. Agrawal,et al.  Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview , 2008 .

[15]  Xuehong Lu,et al.  Toward electrochromic device using solid electrolyte with polar polymer host. , 2009, The journal of physical chemistry. B.

[16]  K. Kanehori,et al.  Ionic conductivity of electrolytes formed from PEO-LiCF3SO3 complex low molecular weight poly(ethylene glycol) , 1987 .

[17]  B. Steele,et al.  Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly(ethylene oxide) polymer electrolytes , 1982 .

[18]  M. Doeff,et al.  Slow recrystallization in the polymer electrolyte system poly(ethylene oxide)n-LiN(CF3SO2)2 , 2000 .

[19]  K. S. Nahm,et al.  Review on composite polymer electrolytes for lithium batteries , 2006 .

[20]  P. Bruce,et al.  Ionic conductivity in crystalline polymer electrolytes , 2001, Nature.

[21]  H. Kao,et al.  Novel composite polymer electrolyte comprising mesoporous structured SiO2 and PEO/Li , 2003 .

[22]  F. M. Gray,et al.  Poly(ethylene oxide) - LiCF3SO3 - polystyrene electrolyte systems , 1986 .

[23]  B. Sandner,et al.  Solid polymer electrolytes based on oligo(ethylene glycol)methacrylates , 1992 .

[24]  Jingyu Xi,et al.  PVDF-PEO blends based microporous polymer electrolyte: Effect of PEO on pore configurations and ionic conductivity , 2006 .

[25]  M. J. Reddy,et al.  Complexation of poly(vinylidene fluoride):LiPF6 solid polymer electrolyte with enhanced ion conduction in ‘wet’ form , 2003 .

[26]  H. Allcock,et al.  Complex formation and ionic conductivity of polyphosphazene solid electrolytes , 1986 .

[27]  C. Lacabanne,et al.  Cooperative movements associated with the Curie transition in P(VDF-TrFE) copolymers , 1995 .

[28]  M. Armand,et al.  A new polymer network for ionic conduction , 1992 .

[29]  P. Topart,et al.  Infrared switching electroemissive devices based on highly conducting polymers , 1999 .

[30]  M. Armand,et al.  COMPARATIVE ELECTROCHEMICAL STUDY OF NEW POLY(OXYETHYLENE)-LI SALT COMPLEXES , 1993 .

[31]  Gajanana C. Birur,et al.  Large, Switchable Electrochromism in the Visible Through Far‐Infrared in Conducting Polymer Devices , 2002 .

[32]  Felix B. Dias,et al.  Trends in polymer electrolytes for secondary lithium batteries , 2000 .

[33]  Masayoshi Watanabe,et al.  Macromolecules in Ionic Liquids: Progress, Challenges, and Opportunities , 2008 .

[34]  C. Angell,et al.  Rubbery solid electrolytes with dominant cationic transport and high ambient conductivity , 1993, Nature.

[35]  Xiaobin Huang,et al.  Study on morphology behavior of PVDF‐based electrolytes , 2004 .

[36]  P. Bruce,et al.  Electrochemical measurement of transference numbers in polymer electrolytes , 1987 .

[37]  Liquan Chen,et al.  Study on roles of polyacrylonitrile in “salt-in-polymer” and “polymer-in-salt” electrolytes , 2002 .

[38]  Wu Xu,et al.  Solvent-Free Electrolytes with Aqueous Solution-Like Conductivities , 2003, Science.