Proof systems for the coalgebraic cover modality

We investigate an alternative presentation of classical and pos- itive modal logic where the coalgebraic cover modality is taken as primitive. For each logic, we present a sound and complete Hilbert-styl e axiomatiza- tion. Moreover, we give a two-sided sound and complete seque nt calculus for the negation-free language, and for the language with negat ion we provide a one-sided sequent calculus which is sound, complete and cu t-free.

[1]  Chen C. Chang,et al.  Model Theory: Third Edition (Dover Books On Mathematics) By C.C. Chang;H. Jerome Keisler;Mathematics , 1966 .

[2]  Josep Maria Font,et al.  A Survey of Abstract Algebraic Logic , 2003, Stud Logica.

[3]  Peter Aczel,et al.  Algebras and Coalgebras , 2000, Algebraic and Coalgebraic Methods in the Mathematics of Program Construction.

[4]  Richard E. Ladner,et al.  The Computational Complexity of Provability in Systems of Modal Propositional Logic , 1977, SIAM J. Comput..

[5]  Yde Venema,et al.  Closure properties of coalgebra automata , 2005, 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05).

[6]  Jan J. M. M. Rutten,et al.  Universal coalgebra: a theory of systems , 2000, Theor. Comput. Sci..

[7]  D. Harrison,et al.  Vicious Circles , 1995 .

[8]  Lawrence S. Moss,et al.  Coalgebraic Logic , 1999, Ann. Pure Appl. Log..

[9]  Kit Fine,et al.  Normal forms in modal logic , 1975, Notre Dame J. Formal Log..

[10]  Igor Walukiewicz,et al.  Automata for the Modal mu-Calculus and related Results , 1995, MFCS.

[11]  Yde Venema,et al.  Completeness for Flat Modal Fixpoint Logics ( Extended Abstract ) , 2007 .

[12]  Willem Conradie,et al.  Definitorially Complete Description Logics , 2006, KR.

[13]  Luigi Santocanale Completions of µ-algebras , 2008, Ann. Pure Appl. Log..

[14]  G. D’Agostino,et al.  On modal mu-calculus with explicit interpolants , 2006, J. Appl. Log..

[15]  Alessandra Palmigiano,et al.  Nabla Algebras and Chu Spaces , 2007, CALCO.