Influences of yaw angle and turbulence intensity on the performance of a 20 kW in-stream hydrokinetic turbine

[1]  L. E. Myers,et al.  Experimental and numerical results of rotor power and thrust of a tidal turbine operating at yaw and in waves , 2011 .

[2]  Paul Mycek,et al.  Experimental study of the turbulence intensity effects on marine current turbines behaviour. Part I: One single turbine , 2014 .

[3]  Kevin A. Haas,et al.  Assessment of Energy Production Potential from Ocean Currents along the United States Coastline , 2013 .

[4]  S. Ravenna,et al.  Design, fabrication and installation of a hydrodynamic rotor for a small-scale experimental ocean current turbine , 2012, 2012 Proceedings of IEEE Southeastcon.

[5]  John E. Quaicoe,et al.  Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review , 2009 .

[6]  Lakshmi N. Sankar,et al.  Numerical Simulation of the Aerodynamics of Horizontal Axis Wind Turbines under Yawed Flow Conditions , 2005 .

[7]  Robert J. Poole,et al.  Experimental investigation of horizontal axis tidal stream turbines , 2011 .

[8]  Yuwei Li,et al.  Dynamic overset CFD simulations of wind turbine aerodynamics , 2012 .

[9]  In Chul Kim,et al.  Performance study on a counter-rotating tidal current turbine by CFD and model experimentation , 2013 .

[10]  A E S Duerr,et al.  Hydrokinetic power resource assessment of the Florida Current , 2010, OCEANS 2010 MTS/IEEE SEATTLE.

[11]  Nilay Sezer-Uzol,et al.  NREL VI rotor blade: numerical investigation and winglet design and optimization using CFD , 2014 .

[12]  Jacob Riglin,et al.  Numerical characterization of a preliminary portable micro-hydrokinetic turbine rotor design , 2015 .

[13]  Ervin Bossanyi,et al.  Wind Energy Handbook , 2001 .

[14]  Kanzumba Kusakana,et al.  Status of micro-hydrokinetic river technology in rural applications: A review of literature , 2014 .

[15]  Maureen Hand,et al.  Unsteady Aerodynamics Experiment Phase VI: Wind Tunnel Test Con gurations and Available Data Campaigns , 2001 .

[16]  Wei Xu,et al.  A Vortex-Lattice Method for the Prediction of Unsteady Performance of Marine Propellers and Current Turbines , 2013 .

[17]  L. E. Myers,et al.  Quantifying wave and yaw effects on a scale tidal stream turbine , 2014 .

[18]  James H. VanZwieten,et al.  A Measurement Based Analyses of the Hydrokinetic Energy in the Gulf Stream , 2016 .

[19]  F. Grasso,et al.  Horizontal Axis Tidal Current Turbine: Numerical and Experimental Investigations , 2006 .

[20]  James H. VanZwieten,et al.  Design and Analysis of a Rotor Blade Optimized for Extracting Energy From the Florida Current , 2011 .

[21]  Paul Mycek,et al.  Experimental study of the turbulence intensity effects on marine current turbines behaviour. Part II: Two interacting turbines , 2014 .

[22]  Jens Nørkær Sørensen,et al.  Tip loss corrections for wind turbine computations , 2005 .

[23]  Pengfei Liu,et al.  A computational hydrodynamics method for horizontal axis turbine – Panel method modeling migration from propulsion to turbine energy , 2010 .

[24]  Anthony F. Molland,et al.  Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank , 2007 .

[25]  William D. Bolin Ocean Stream Power Generation: Unlocking a Source of Vast, Continuous, Renewable Energy , 2014 .

[26]  Ye Li,et al.  Development and Verification of a Computational Fluid Dynamics Model of a Horizontal-Axis Tidal Current Turbine , 2011 .

[27]  Jing Liu,et al.  Wake field studies of tidal current turbines with different numerical methods , 2016 .