Numerical solution of the incompressible Navier-Stokes equations for chemical mixers via quantum-inspired Tensor Train Finite Element Method

The solution of computational fluid dynamics problems is one of the most computationally hard tasks, especially in the case of complex geometries and turbulent flow regimes. We propose to use Tensor Train (TT) methods, which possess logarithmic complexity in problem size and have great similarities with quantum algorithms in the structure of data representation. We develop the Tensor train Finite Element Method -- TetraFEM -- and the explicit numerical scheme for the solution of the incompressible Navier-Stokes equation via Tensor Trains. We test this approach on the simulation of liquids mixing in a T-shape mixer, which, to our knowledge, was done for the first time using tensor methods in such non-trivial geometries. As expected, we achieve exponential compression in memory of all FEM matrices and demonstrate an exponential speed-up compared to the conventional FEM implementation on dense meshes. In addition, we discuss the possibility of extending this method to a quantum computer to solve more complex problems. This paper is based on work we conducted for Evonik Industries AG.

[1]  A. Naumov,et al.  Tetra-AML: Automatic Machine Learning via Tensor Networks , 2023, ArXiv.

[2]  D. Morozov,et al.  Protein-protein docking using a tensor train black-box optimization method , 2023, 2302.03410.

[3]  Bao-Wen Yang,et al.  Verification and validation of CFD and its application in PWR fuel assembly , 2022, Progress in Nuclear Energy.

[4]  Huiuk Yi,et al.  Applications of Computational Fluid Dynamics for Mine Ventilation in Mineral Development , 2022, Energies.

[5]  D. Gallo,et al.  Current and Future Applications of Computational Fluid Dynamics in Coronary Artery Disease , 2022, Reviews in cardiovascular medicine.

[6]  A. Makmal,et al.  Approximate encoding of quantum states using shallow circuits , 2022, npj Quantum Information.

[7]  L. Lapworth A Hybrid Quantum-Classical CFD Methodology with Benchmark HHL Solutions , 2022, 2206.00419.

[8]  A. I. Pakhomchik,et al.  Solving Large‐Scale Linear Systems of Equations by a Quantum Hybrid Algorithm , 2022, Annalen der Physik.

[9]  F. Neukart,et al.  Practical application-specific advantage through hybrid quantum computing , 2022, ArXiv.

[10]  David Von Dollen,et al.  Hyperparameter optimization of hybrid quantum neural networks for car classification , 2022, ArXiv.

[11]  A. Cichocki,et al.  TTOpt: A Maximum Volume Quantized Tensor Train-based Optimization and its Application to Reinforcement Learning , 2022, NeurIPS.

[12]  Nikita Gourianov,et al.  A quantum-inspired approach to exploit turbulence structures , 2021, Nature Computational Science.

[13]  A. M. Krol,et al.  Efficient decomposition of unitary matrices in quantum circuit compilers , 2021, Applied Sciences.

[14]  Nikita Gourianov Exploiting the structure of turbulence with tensor networks , 2022 .

[15]  N. V. Burmasheva,et al.  Towards understanding the algorithms for solving the Navier–Stokes equations , 2021, Fluid Dynamics Research.

[16]  Andrew M. Childs,et al.  High-precision quantum algorithms for partial differential equations , 2020, Quantum.

[17]  L. Markeeva,et al.  QTT-isogeometric solver in two dimensions , 2018, J. Comput. Phys..

[18]  Frank Gaitan,et al.  Finding flows of a Navier–Stokes fluid through quantum computing , 2020, npj Quantum Information.

[19]  Lixin Fan,et al.  A quantum Poisson solver implementable on NISQ devices , 2020, 2005.00256.

[20]  Shi-Ju Ran,et al.  Encoding of matrix product states into quantum circuits of one- and two-qubit gates , 2019, Physical Review A.

[21]  J. Joo,et al.  Variational quantum algorithms for nonlinear problems , 2019, Physical Review A.

[22]  Martin Stoll,et al.  A Low-Rank Tensor Method for PDE-Constrained Optimization with Isogeometric Analysis , 2018, SIAM J. Sci. Comput..

[23]  Román Orús,et al.  Tensor networks for complex quantum systems , 2018, Nature Reviews Physics.

[24]  John W. Pearson,et al.  Preconditioners and Tensor Product Solvers for Optimal Control Problems from Chemotaxis , 2018, SIAM J. Sci. Comput..

[25]  Dieter Jaksch,et al.  Multigrid renormalization , 2018, J. Comput. Phys..

[26]  Andrew M. Childs,et al.  Quantum Algorithm for Systems of Linear Equations with Exponentially Improved Dependence on Precision , 2015, SIAM J. Comput..

[27]  Alexander Novikov,et al.  Tensorizing Neural Networks , 2015, NIPS.

[28]  A. Chorin The Numerical Solution of the Navier-Stokes Equations for an Incompressible Fluid , 2015 .

[29]  S. V. Dolgov,et al.  ALTERNATING MINIMAL ENERGY METHODS FOR LINEAR SYSTEMS IN HIGHER DIMENSIONS∗ , 2014 .

[30]  G. Morini,et al.  Experimental and Numerical Analysis of Single Phase Flow in a micro T-junction , 2014 .

[31]  I. Oseledets Constructive Representation of Functions in Low-Rank Tensor Formats , 2012, Constructive Approximation.

[32]  S. V. DOLGOV,et al.  Fast Solution of Parabolic Problems in the Tensor Train/Quantized Tensor Train Format with Initial Application to the Fokker-Planck Equation , 2012, SIAM J. Sci. Comput..

[33]  Ivan Oseledets,et al.  Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..

[34]  B. Khoromskij O(dlog N)-Quantics Approximation of N-d Tensors in High-Dimensional Numerical Modeling , 2011 .

[35]  E. Tyrtyshnikov,et al.  TT-cross approximation for multidimensional arrays , 2010 .

[36]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[37]  Barry Lee,et al.  Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..

[38]  F. Verstraete,et al.  Sequential generation of entangled multiqubit states. , 2005, Physical review letters.

[39]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[40]  Jiri Blazek,et al.  Computational Fluid Dynamics: Principles and Applications , 2001 .

[41]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[42]  W. J. Gordon,et al.  Transfinite mappings and their application to grid generation , 1982 .