Direct Electrical Communication between Chemically Modified Enzymes and Metal Electrodes: III. Electron-Transfer Relay Modified Glucose Oxidase and D-Amino-Acid Oxidase

Electrical communications between enzymes and metal electrodes is an element in the bridging of electronics and biochemistry and is of specific relevance to the electrochemical assay of biochemicals. In such assays, the enzyme is usually first reduced by the substrate, then is reoxidized either directly at an electrode1, or indirectly by oxygen or a diffusing redox mediator2-30. Electrochemical or chemical assays of the oxygen consumed, or of the hydrogen peroxide or reduced mediator products, serve in amperometric2–30 or colorimetric31,32 assays of substrates such as glucose and cholesterol.

[1]  N. Sutin Theory of electron transfer reactions: insights and hindsights , 2007 .

[2]  A. Turner,et al.  Ferrocene-mediated enzyme electrode for amperometric determination of glucose. , 1984, Analytical chemistry.

[3]  Philip N. Bartlett,et al.  Amperometric enzyme electrodes: Part I. Theory , 1985 .

[4]  L. C. Clark,et al.  Implanted Electroenzymatic Glucose Sensors , 1982, Diabetes Care.

[5]  H. Hill,et al.  The electrochemistry of hexacyanoruthenate at carbon electrodes and the use of ruthenium compounds as mediators in the glucose/glucose oxidase system , 1986 .

[6]  J. Kulys,et al.  Electron exchange between the enzyme active center and organic metal , 1980, FEBS letters.

[7]  J. Ulstrup,et al.  Long‐range intramolecular electron transfer in aromatic radical anions and binuclear transition metal complexes , 1981 .

[8]  B. Hoffman,et al.  Electron transfer at crystallographically known long distances (25 .ANG.) in [ZnII,FeIII] hybrid hemoglobin , 1983 .

[9]  S. Colowick,et al.  Methods in Enzymology , Vol , 1966 .

[10]  J. Ulstrup,et al.  Approaches to a theory of electron transfer reactions at film covered electrodes , 1977 .

[11]  R. Marcus,et al.  Electron transfers in chemistry and biology , 1985 .

[12]  J. Jortner,et al.  Coupling of protein modes to electron transfer in bacterial photosynthesis , 1986 .

[13]  Alexander M. Yacynych,et al.  Immobilized enzyme chemically modified electrode as an amperometric sensor , 1981 .

[14]  Philip N. Bartlett,et al.  Amperometric enzyme electrodes: Part II. Conducting salts as electrode materials for the oxidation of glucose oxidase , 1985 .

[15]  H. Taube,et al.  Synthesis and properties of pentaamminepyridineruthenium(II) and related pentaammineruthenium complexes of aromatic nitrogen heterocycles , 1968 .

[16]  M. Senda,et al.  Glucose Oxidase-Immobilized Benzoquinone-Mixed Carbon Paste Electrode with Pre-Minigrid , 1985 .

[17]  E. Clementi,et al.  Structure and Motion: Membranes, Nucleic Acids and Proteins , 1985 .

[18]  G. P. Hicks,et al.  Reagentless Substrate Analysis with Immobilized Enzymes , 1967, Science.

[19]  L. B. Wingard,et al.  Enhanced direct electron transport with glucose oxidase immobilized on (aminophenyl)boronic acid modified glassy carbon electrode , 1986 .

[20]  J. E. Pinney,et al.  Multilayer film elements for clinical analysis: general concepts. , 1978, Clinical chemistry.

[21]  J. Kulys,et al.  Oxidation of glucose oxidase from Penicillium vitale by one- and two-electron acceptors , 1983 .

[22]  Adam Heller,et al.  Direct electrical communication between chemically modified enzymes and metal electrodes. I. Electron transfer from glucose oxidase to metal electrodes via electron relays, bound covalently to the enzyme , 1987 .

[23]  Wiltzius,et al.  Hydrodynamic behavior of fractal aggregates. , 1987, Physical review letters.

[24]  J J Hopfield,et al.  Electron transfer between biological molecules by thermally activated tunneling. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[25]  T. Shirey Development of a layered-coating technology for clinical chemistry. , 1983, Clinical Biochemistry.

[26]  J. Miller Effects of Distance, Energy and Molecular Structure on Long-Distance Electron-Transfer Between Molecules , 1985 .

[27]  R. Marcus On the frequency factor in electron transfer reactions and its role in the highly exothermic regime , 1981 .

[28]  S L Mayo,et al.  Long-range electron transfer in heme proteins. , 1986, Science.

[29]  D. Gough,et al.  Two-dimensional enzyme electrode sensor for glucose. , 1985, Analytical chemistry.

[30]  T. S. Scott,et al.  Dangerous Properties of Industrial Materials , 1969 .

[31]  C. Pace Determination and analysis of urea and guanidine hydrochloride denaturation curves. , 1986, Methods in enzymology.

[32]  F. Scheller,et al.  Regular papers269 - Polarographic reduction of the prosthetic group in flavoproteins , 1979 .

[33]  G. Mclendon,et al.  Long distance electron transfer in polymers and proteins , 1985 .

[34]  C. Tait,et al.  Spectroscopic study of the parent and reduction products of some substituted bipyridine complexes of iron(II) and osmium(II). I. Substitution at the 5,5' positions , 1986 .

[35]  G. Mclendon,et al.  Thermal and Photoinduced Long Distance Electron Transfer in Proteins and in Model Systems , 1986 .

[36]  M. Senda,et al.  Amperometric Biosensors Based on a Biocatalyst Electrode with Entrapped Mediator , 1986 .

[37]  M. J. Weaver,et al.  Intramolecular electron transfer at metal surfaces. IV: Dependence of tunneling probability upon donor-acceptor separation distance , 1984 .

[38]  Hans Kuhn,et al.  Tunneling through Fatty Acid Salt Monolayers , 1971 .

[39]  G. Hicks,et al.  The Enzyme Electrode , 1967, Nature.

[40]  W. Bennett,et al.  Structural and functional aspects of domain motions in proteins. , 1984, CRC critical reviews in biochemistry.

[41]  J. L. Katz,et al.  The crystal and molecular structure of ruthenium-sulfur dioxide coordination compounds. I - Chlorotetraammine /sulfur dioxide/ ruthenium /II/ chloride. , 1965 .

[42]  Curtis D. Klaassen,et al.  Casarett and Doull's Toxicology. The Basic Science of Poisons , 1981 .

[43]  Y. Yamasaki,et al.  WEARABLE ARTIFICIAL ENDOCRINE PANCREAS WITH NEEDLE-TYPE GLUCOSE SENSOR , 1982, The Lancet.

[44]  D. Gough,et al.  Erogress Toward a Potentially Implantable, Enzyme-Based Glucose Sensor , 1982, Diabetes Care.

[45]  J. Hopfield,et al.  Calculation of tunneling matrix elements in rigid systems: mixed-valence dithiaspirocyclobutane molecules , 1984 .

[46]  S. S. Isied,et al.  Preparation and characterization of a pentaammineruthenium(III) derivative of horse heart ferricytochrome c. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[47]  M. Newton,et al.  Electron Transfer Reactions in Condensed Phases , 1984 .

[48]  D. Lednicer,et al.  Reaction of the Methiodide of N,N-Dimethylaminomethylferrocene with Potassium Cyanide to Form Ferrocylacetonitrile1 , 1958 .

[49]  S. Varfolomeyev,et al.  Bioelectrocatalysis: Part I. Oxidation-reduction enzymes (hydrogenase and glucose oxidase) immobilized in polymeric semiconductors , 1984 .

[50]  S. Larsson Electron transfer in proteins , 1998 .

[51]  K S Chua,et al.  Plasma glucose measurement with the Yellow Springs Glucose Analyzer. , 1978, Clinical chemistry.

[52]  S. S. Isied,et al.  Electron transfer across polypeptides. 4. Intramolecular electron transfer from ruthenium(II) to iron(III) in histidine-33-modified horse heart cytochrome c , 1982 .

[53]  H. Michel,et al.  Single Crystals from Reaction Centers of Rhodopseudomonas viridis Studied by Polarized Light , 1985 .

[54]  J. Jortner Dynamics of electron transfer in bacterial photosynthesis. , 1980, Biochimica et biophysica acta.

[55]  D. Claremont,et al.  Potentially-implantable, ferrocene-mediated glucose sensor. , 1986, Journal of biomedical engineering.

[56]  P. Coulet,et al.  245 - A highly sensitive glucose electrode using glucose oxidase collagen film , 1978 .

[57]  M. Michel-beyerle Antennas and Reaction Centers of Photosynthetic Bacteria , 1985 .

[58]  K. Koga,et al.  Effect of periodate oxidation on the structure and properties of glucose oxidase. , 1976, Biochimica et biophysica acta.

[59]  Robert Sternberg,et al.  ENZYME COLLAGEN MEMBRANE FOR ELECTROCHEMICAL DETERMINATION OF GLUCOSE , 1979 .

[60]  J. Deisenhofer,et al.  Correlation of structural and spectroscopic properties of a photosynthetic reaction center , 1985 .

[61]  Kuhn Electron transfer mechanism in the reaction center of photosynthetic bacteria. , 1986, Physical review. A, General physics.

[62]  H. Gray,et al.  Long-distance electron transfer in pentaammineruthenium (histidine-48)-myoglobin. Reorganizational energetics of a high-spin heme , 1985 .

[63]  C. Bourdillon,et al.  Covalent linkage of glucose oxidase on modified glassy carbon electrodes. Kinetic phenomena , 1980 .

[64]  H. Tsuge,et al.  Purification, properties, and molecular features of glucose oxidase from Aspergillus niger. , 1975, Journal of biochemistry.

[65]  J. Rishpon,et al.  Enzyme electrode for the determination of glucose. , 1981, Analytical chemistry.

[66]  M. J. Weaver,et al.  Rate-structure dependencies for intramolecular electron transfer via organic anchoring groups at metal surfaces , 1986 .