Robust and adaptive anticoagulant control

We consider a control theory approach to adaptive dose allocation of anticoagulants, based on an analysis of records of 152 patients on long-term warfarin treatment. We consider a selection of statistical models for the relationship between the dose of drug and subsequent blood clotting speed, measured through the international normalized ratio. Our main focus is on subsequent use of the model in guiding the choice of the next dose adaptively as patient-specific information accrues. We compare a naive long-term approach with a proportional-integral-plus method, with parameters estimated by either linear quadratic optimization or by stochastic resource allocation. We demonstrate advantages of the control approaches in comparison with a naive approach in simulations and through calculation of robust stability margins for the observed data.

[1]  Peter C. Young,et al.  Direct digital and adaptive control by input-output state variable feedback pole assignment , 1987 .

[2]  Yu Chen,et al.  Bayesian Joint Semiparametric Mean–Covariance Modeling for Longitudinal Data , 2018, Communications in Mathematics and Statistics.

[3]  Dan M Roden,et al.  Genetic determinants of response to warfarin during initial anticoagulation. , 2008, The New England journal of medicine.

[4]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[5]  R. Beyth,et al.  Anticoagulant-related bleeding: clinical epidemiology, prediction, and prevention. , 1993, The American journal of medicine.

[6]  John Doyle,et al.  Structured uncertainty in control system design , 1985, 1985 24th IEEE Conference on Decision and Control.

[7]  Antonio Visioli,et al.  Digital Control Engineering: Analysis and Design , 2009 .

[8]  G. Steil,et al.  Closed-loop insulin delivery-the path to physiological glucose control. , 2004, Advanced drug delivery reviews.

[9]  Pramod P. Khargonekar,et al.  Robustness margin need not be a continuous function of the problem data , 1990 .

[10]  Robert F. Stengel,et al.  Robust control system design using random search and genetic algorithms , 1997, IEEE Trans. Autom. Control..

[11]  G. Stein,et al.  Performance and robustness analysis for structured uncertainty , 1982, 1982 21st IEEE Conference on Decision and Control.

[12]  Robert F. Stengel,et al.  Robust control of nonlinear systems with parametric uncertainty , 2002, Autom..

[13]  M. Pirmohamed,et al.  A Proposal for an Individualized Pharmacogenetics‐Based Warfarin Initiation Dose Regimen for Patients Commencing Anticoagulation Therapy , 2011, Clinical pharmacology and therapeutics.

[14]  Gene F. Franklin,et al.  Feedback Control of Dynamic Systems , 1986 .

[15]  David A Stephens,et al.  Simulating sequential multiple assignment randomized trials to generate optimal personalized warfarin dosing strategies , 2014, Clinical trials.

[16]  A. Ozonoff,et al.  Pathways to poor anticoagulation control , 2014, Journal of thrombosis and haemostasis : JTH.

[17]  A. Tits,et al.  Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics , 1991 .

[18]  A. Tits,et al.  Robustness in the Presence of Joint parametric Uncertainty and Unmodeled Dynamics , 1988, 1988 American Control Conference.

[19]  Phil Ansell,et al.  Regret‐Regression for Optimal Dynamic Treatment Regimes , 2010, Biometrics.

[20]  P. Young,et al.  State space control system design based on non-minimal state-variable feedback: Further generalization and unification results , 2000 .

[21]  N. Holford Clinical Pharmacokinetics and Pharmacodynamics of Warfarin , 1986, Clinical pharmacokinetics.

[22]  M. Pourahmadi Joint mean-covariance models with applications to longitudinal data: Unconstrained parameterisation , 1999 .

[23]  S Bryan,et al.  An international multicenter randomized study of computer‐assisted oral anticoagulant dosage vs. medical staff dosage , 2008, Journal of thrombosis and haemostasis : JTH.

[24]  J. Hirsh,et al.  Interactions of Warfarin with Drugs and Food , 1994, Annals of Internal Medicine.

[25]  Andrew Packard,et al.  The complex structured singular value , 1993, Autom..

[26]  R. Stengel,et al.  Stochastic robustness synthesis applied to a benchmark control problem , 1995 .

[27]  A. Turpie,et al.  A multicentre randomised clinical endpoint study of parma 5 computer‐assisted oral anticoagulant dosage , 2008, British journal of haematology.

[28]  Munir Pirmohamed,et al.  A Randomized Trial of Genotype-Guided Dosing of Warfarin , 2014 .

[29]  J. Doyle,et al.  mu analysis with real parametric uncertainty , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[30]  Robin Henderson,et al.  Estimation of optimal dynamic anticoagulation regimes from observational data: a regret-based approach. , 2006, Statistics in medicine.

[31]  Yi Pan,et al.  jmcm: An R Package for Joint Mean-Covariance Modeling of Longitudinal Data , 2017 .

[32]  D. Murthy,et al.  Controllability of discrete-time systems with positive controls , 1977 .

[33]  Munir Pirmohamed,et al.  A multi-factorial analysis of response to warfarin in a UK prospective cohort , 2016, Genome Medicine.

[34]  H. Elewa,et al.  The Impact of Genetic and Non-Genetic Factors on Warfarin Dose Prediction in MENA Region: A Systematic Review , 2016, PloS one.

[35]  A. Packard,et al.  Continuity properties of the real/complex structured singular value , 1993, IEEE Trans. Autom. Control..

[36]  Peter C. Young,et al.  True Digital Control: Statistical Modelling and Non-Minimal State Space Design , 2013 .

[37]  R. Stengel,et al.  Stochastic robustness of linear control systems , 1990 .